Vanadium(III) Acetylacetonate as an Efficient Soluble Catalyst for Lithium-Oxygen Batteries

被引:61
作者
Zhao, Qin [1 ,3 ]
Katyal, Naman [2 ]
Seymour, Ieuan D. [2 ]
Henkelman, Graeme [2 ]
Ma, Tianyi [3 ]
机构
[1] Liaoning Univ, Coll Chem, Key Lab Green Synth & Preparat Chem Adv Mat, Inst Clean Energy Chem, Shenyang 110036, Liaoning, Peoples R China
[2] Univ Texas Austin, Dept Chem, Oden Inst Computat Engn & Sci, 105 E 24th St,Stop A5300, Austin, TX 78712 USA
[3] Univ Newcastle, Discipline Chem, Callaghan, NSW 2308, Australia
基金
澳大利亚研究理事会;
关键词
donor number; Li-O-2; battery; reaction mechanism; soluble catalyst; vanadium(III) acetylacetonate; LOW-COST; LI-O-2; ELECTROLYTE; AIR; SUPEROXIDE; DISCHARGE; CARBON;
D O I
10.1002/anie.201907477
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High donor number (DN) solvents in Li-O-2 batteries that dissolve superoxide intermediates in lithium peroxide (Li2O2) formation facilitate high capacities at high rates and avoid early cell death. However, their beneficial characteristics also result in an instability towards highly reactive superoxide intermediates. Furthermore, Li-O-2 batteries would deliver a superior energy density, but the multiphase electrochemical reactions are difficult to achieve when operating with only solid catalysts. Herein we demonstrate that vanadium(III) acetylacetonate (V(acac)(3)) is an efficient soluble catalyst that can address these problems. During discharge, V(acac)(3) integrates with the superoxide intermediate, accelerating O-2 reduction kinetics and reducing side reactions. During charge, V(acac)(3) acts as a redox mediator that permits efficient oxidation of Li2O2. The cells with V(acac)(3) exhibit low overpotential, high rate performance, and considerable cycle stability.
引用
收藏
页码:12553 / 12557
页数:5
相关论文
共 41 条
[11]   Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium-Air Battery [J].
Laoire, Cormac O. ;
Mukerjee, Sanjeev ;
Abraham, K. M. ;
Plichta, Edward J. ;
Hendrickson, Mary A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (19) :9178-9186
[12]   Elucidating the Mechanism of Oxygen Reduction for Lithium-Air Battery Applications [J].
Laoire, Cormac O. ;
Mukerjee, Sanjeev ;
Abraham, K. M. ;
Plichta, Edward J. ;
Hendrickson, Mary A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (46) :20127-20134
[13]   Multiscale Structural Engineering of Ni-Doped CoO Nanosheets for Zinc-Air Batteries with High Power Density [J].
Li, Yue-Jiao ;
Cui, Lan ;
Da, Peng-Fei ;
Qiu, Kang-Wen ;
Qin, Wen-Jing ;
Hu, Wen-Bin ;
Du, Xi-Wen ;
Davey, Kenneth ;
Ling, Tao ;
Qiao, Shi-Zhang .
ADVANCED MATERIALS, 2018, 30 (46)
[14]   Critical Role of Redox Mediator in Suppressing Charging Instabilities of Lithium-Oxygen Batteries [J].
Liang, Zhuojian ;
Lu, Yi-Chun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (24) :7574-7583
[15]  
Lim H.-D., 2014, ANGEW CHEM-GER EDIT, V126, P4007, DOI DOI 10.1002/ANGE.201400711
[16]  
Lim HD, 2016, NAT ENERGY, V1, DOI [10.1038/NENERGY.2016.66, 10.1038/nenergy.2016.66]
[17]   Superior Rechargeability and Efficiency of Lithium-Oxygen Batteries: Hierarchical Air Electrode Architecture Combined with a Soluble Catalyst [J].
Lim, Hee-Dae ;
Song, Hyelynn ;
Kim, Jinsoo ;
Gwon, Hyeokjo ;
Bae, Youngjoon ;
Park, Kyu-Young ;
Hong, Jihyun ;
Kim, Haegyeom ;
Kim, Taewoo ;
Kim, Yong Hyup ;
Lepro, Xavier ;
Ovalle-Robles, Raquel ;
Baughman, Ray H. ;
Kang, Kisuk .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (15) :3926-3931
[18]   Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis [J].
Ling, Tao ;
Yan, Dong-Yang ;
Jiao, Yan ;
Wang, Hui ;
Zheng, Yao ;
Zheng, Xueli ;
Mao, Jing ;
Du, Xi-Wen ;
Hu, Zhenpeng ;
Jaroniec, Mietek ;
Qiao, Shi-Zhang .
NATURE COMMUNICATIONS, 2016, 7
[19]   Non-aqueous vanadium acetylacetonate electrolyte for redox flow batteries [J].
Liu, Qinghua ;
Sleightholme, Alice E. S. ;
Shinkle, Aaron A. ;
Li, Yongdan ;
Thompson, Levi T. .
ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (12) :2312-2315
[20]  
Liu T., 2017, ANGEW CHEMIE, V129, P16273