Optimization of pulsed thermography inspection by partial least-squares regression

被引:93
|
作者
Lopez, Fernando [1 ]
Ibarra-Castanedo, Clemente [2 ]
Nicolau, Vicente de Paulo [1 ]
Maldague, Xavier [2 ]
机构
[1] Univ Fed Santa Catarina, Dept Mech Engn, BR-88040900 Florianopolis, SC, Brazil
[2] Univ Laval, Dept Elect & Comp Engn, Quebec City, PQ G1K 704, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Partial least squares regression; Pulsed thermography; Signal processing techniques; Composite materials; Thermal nondestructive testing; IMAGES;
D O I
10.1016/j.ndteint.2014.06.003
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This paper introduces and tests a statistical correlation method for the optimization of the pulsed thermography inspection. The method is based on partial least squares regression, which decomposes the thermographic PT data sequence obtained during the cooling regime into a set of latent variables. The regression method is applied to experimental PT data from a carbon fiber-reinforced composite with simulated defects. The performance of the regression technique is evaluated in terms of the signal-to-noise ratio. The results showed an increase in the SNRs for 96% of the defects after processing the original sequence with PLSR. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:128 / 138
页数:11
相关论文
共 50 条
  • [41] Quantitative X-ray fluorescence analysis of geological materials using partial least-squares regression
    Adams, MJ
    Allen, JR
    ANALYST, 1998, 123 (04) : 537 - 541
  • [42] Tide modeling using partial least squares regression
    Okwuashi, Onuwa
    Ndehedehe, Christopher
    Attai, Hosanna
    OCEAN DYNAMICS, 2020, 70 (08) : 1089 - 1101
  • [43] Voice Conversion Using Partial Least Squares Regression
    Helander, Elina
    Virtanen, Tuomas
    Nurminen, Jani
    Gabbouj, Moncef
    IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2010, 18 (05): : 912 - 921
  • [44] Tide modeling using partial least squares regression
    Onuwa Okwuashi
    Christopher Ndehedehe
    Hosanna Attai
    Ocean Dynamics, 2020, 70 : 1089 - 1101
  • [45] Investigating the source apportionment of heavy metals in soil surrounding reservoir using partial least-squares regression model
    Huang, Xu-dong
    Han, Pei-pei
    Ma, Mei-jing
    Cao, Qiong
    Li, Wei-zhuo
    Wan, Fang
    Zhang, Xiao-li
    Chai, Qi-hui
    Zhong, Ling
    Li, Bao-jian
    WATER SUPPLY, 2022, 22 (04) : 3908 - 3920
  • [46] Quartz-Enhanced Photoacoustic Spectroscopy Assisted by Partial Least-Squares Regression for Multi-Gas Measurements
    Rasmussen, Andreas N.
    Thomsen, Benjamin L.
    Christensen, Jesper B.
    Petersen, Jan C.
    Lassen, Mikael
    SENSORS, 2023, 23 (18)
  • [47] Mass spectrometry and partial least-squares regression: a tool for identification of wheat variety and end-use quality
    Sorensen, HA
    Petersen, MK
    Jacobsen, S
    Sondergaard, I
    JOURNAL OF MASS SPECTROMETRY, 2004, 39 (06): : 607 - 612
  • [48] Characteristic wavelength optimization for partial least squares regression using improved flower pollination algorithm
    Ong, Pauline
    Jian, Jinbao
    Yin, Jianghua
    Ma, Guodong
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2023, 302
  • [49] Comparison of partial least squares regression, least squares support vector machines, and Gaussian process regression for a near infrared calibration
    Cui, Chenhao
    Fearn, Tom
    JOURNAL OF NEAR INFRARED SPECTROSCOPY, 2017, 25 (01) : 5 - 14
  • [50] Critical evaluation of a significance test for partial least squares regression
    Faber, NM
    ANALYTICA CHIMICA ACTA, 2001, 432 (02) : 235 - 240