Bimetallic strip based triboelectric nanogenerator for self-powered high temperature alarm system

被引:27
作者
Lai, Jianxin [1 ]
Ke, Yan [2 ]
Cao, Zhikang [1 ]
Xu, Wenxia [1 ]
Pan, Jing [1 ]
Dong, Yifan [1 ]
Zhou, Qitao [1 ]
Meng, Guowen [2 ]
Pan, Caofeng [3 ,4 ]
Xia, Fan [1 ]
机构
[1] China Univ Geosci, Fac Mat Sci & Chem, Engn Res Ctr Nanogeomat,Minist Educ, State Key Lab Biogeol & Environm Geol, Wuhan 430074, Peoples R China
[2] Chinese Acad Sci, Inst Solid State Phys,Key Lab Mat Phys, Anhui Key Lab Nanomat & Nanotechnol, HFIPS, Hefei 230031, Peoples R China
[3] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, CAS Ctr Excellence Nanosci, Beijing Key Lab Micronano Energy & Sensor, Beijing 101400, Peoples R China
[4] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Triboelectric nanogenerator; Self-powered sensor; Bimetallic strip; High temperature alarm;
D O I
10.1016/j.nantod.2022.101437
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The failure of mechanical or electronic equipment caused by high temperature brings huge economic losses. At the same time, the potential fire danger brought by high temperature threatens people's lives. Realizing high temperature alarm is a double test of the material preparation and device construction. Here, a novel self-powered high temperature alarm sensor has been realized based on the combination of triboelectric nanogenerator and bimetallic strip. Besides, electrospun polyimide (PI) nanofiber membranes were prepared as the high temperature resistant friction material. When encountering high temperature, the rapid deformation of bimetallic strip can make it interact with the PI friction material to generate electrical signals for alarm. Finally, a series of demonstrations showed the wide application potential of the system in high temperature alarm. (c) 2022 Published by Elsevier Ltd.
引用
收藏
页数:7
相关论文
共 32 条
[1]   Thermo-mechanical efficiency of the bimetallic strip heat engine at the macro-scale and micro-scale [J].
Arnaud, A. ;
Boughaleb, J. ;
Monfray, S. ;
Boeuf, F. ;
Cugat, O. ;
Skotnicki, T. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2015, 25 (10)
[2]   A review of thermal interface material fabrication method toward enhancing heat dissipation [J].
Bahru, Raihana ;
Zamri, Mohd Faiz Muaz Ahmad ;
Shamsuddin, Abd Halim ;
Shaari, Norazuwana ;
Mohamed, Mohd Ambri .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (03) :3548-3568
[3]   Flame-Retardant Textile-Based Triboelectric Nanogenerators for Fire Protection Applications [J].
Cheng, Renwei ;
Dong, Kai ;
Liu, Longxiang ;
Ning, Chuan ;
Chen, Pengfei ;
Peng, Xiao ;
Liu, Di ;
Wang, Zhong Lin .
ACS NANO, 2020, 14 (11) :15853-15863
[4]   Nanopillar-array architectured PDMS-based triboelectric nanogenerator integrated with a windmill model for effective wind energy harvesting [J].
Dudem, Bhaskar ;
Nghia Dinh Huynh ;
Kim, Wook ;
Kim, Dong Hyun ;
Hwang, Hee Jae ;
Choi, Dukhyun ;
Yu, Jae Su .
NANO ENERGY, 2017, 42 :269-281
[5]   A turbine disk-type triboelectric nanogenerator for wind energy harvesting and self-powered wildfire pre-warning [J].
Gao, Xiaobo ;
Xing, Fangjing ;
Guo, Feng ;
Yang, Yuhan ;
Hao, Yutao ;
Chen, Jun ;
Chen, Baodong ;
Wang, Zhong Lin .
MATERIALS TODAY ENERGY, 2021, 22
[6]  
He H., 2022, ACS NANO, V24, P31549
[7]   Beyond energy harvesting - multi-functional triboelectric nanosensors on a textile [J].
He, Tianyiyi ;
Shi, Qiongfeng ;
Wang, Hao ;
Wen, Feng ;
Chen, Tao ;
Ouyang, Jianyong ;
Lee, Chengkuo .
NANO ENERGY, 2019, 57 :338-352
[8]   Fiber-Based Energy Conversion Devices for Human-Body Energy Harvesting [J].
Huang, Liang ;
Lin, Shizhe ;
Xu, Zisheng ;
Zhou, He ;
Duan, Jiangjiang ;
Hu, Bin ;
Zhou, Jun .
ADVANCED MATERIALS, 2020, 32 (05)
[9]   Ultralight, Thermally Insulating, Compressible Polyimide Fiber Assembled Sponges [J].
Jiang, Shaohua ;
Uch, Bianca ;
Agarwal, Seema ;
Greiner, Andreas .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (37) :32308-32315
[10]   Free-Fixed Rotational Triboelectric Nanogenerator for Self-Powered Real-Time Wheel Monitoring [J].
Jin, Long ;
Zhang, Steven L. ;
Xu, Sixing ;
Guo, Hengyu ;
Yang, Weiqing ;
Wang, Zhong Lin .
ADVANCED MATERIALS TECHNOLOGIES, 2021, 6 (03)