Different evidence summaries have implications for contextualizing findings of meta-analysis of diagnostic tests

被引:1
作者
Zgodic, Anja [1 ]
Schmid, Christopher H. [1 ,2 ]
Olkin, Ingram [3 ]
Trikalinos, Thomas A. [1 ,4 ]
机构
[1] Brown Univ, Sch Publ Hlth, Ctr Evidence Synth Hlth, 121 S Main St, Providence, RI 02912 USA
[2] Brown Univ, Sch Publ Hlth, Dept Biostat, Providence, RI 02912 USA
[3] Stanford Univ, Dept Stat, Palo Alto, CA 94304 USA
[4] Brown Univ, Sch Publ Hlth, Dept Hlth Serv Policy & Practice, Providence, RI 02912 USA
基金
美国医疗保健研究与质量局;
关键词
Decision analysis; Prevalence; Sensitivity; Specificity; Quality-adjusted life years; Predictive mean; TOMOGRAPHY/COMPUTED TOMOGRAPHY PET/CT; PREDICTION INTERVALS; ECONOMIC-EVALUATION; TEST ACCURACY; BIAS;
D O I
10.1016/j.jclinepi.2019.01.002
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Objective: To evaluate diagnostic tests, analysts use meta-analyses to provide inputs to parameters in decision models. Choosing parameter estimands from meta-analyses requires understanding the meta-analytic and decision-making contexts. Study Design and Setting: We expand on an analysis comparing positron emission tomography (PET), PET with computed tomography (PET/CT), and conventional workup (CW) in women with suspected recurrent breast cancer. We discuss Bayesian meta-analytic summaries (posterior mean over a set of existing studies, posterior estimate in an existing study, posterior predictive mean in a new study) used to estimate diagnostic test parameters (prevalence, sensitivity, specificity) needed to calculate quality-adjusted life years in a decision model contextualizing PET, PET/CT, and CW. Results: The mean and predictive mean give similar estimates, but the latter displays greater uncertainty. Namely, PET/CT outperforms CW on average but may not do better than CW when implemented in future settings. Conclusion: Selecting estimands for decision model parameters from meta-analyses requires understanding the relationship between decision settings and meta-analysis studies' settings, specifically whether the former resemble one or all study settings or represents new settings. We provide an algorithm recommending appropriate estimands as input parameters in decision models for diagnostic tests to obtain output parameters consistent with the decision context. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:51 / 61
页数:11
相关论文
共 32 条
  • [1] The interpretation of random-effects meta-analysis in decision models
    Ades, AE
    Lu, G
    Higgins, JPT
    [J]. MEDICAL DECISION MAKING, 2005, 25 (06) : 646 - 654
  • [2] [Anonymous], 2004, PHARM STAT, DOI DOI 10.1002/PST.130
  • [3] [Anonymous], 2002, HIERARCHICAL LINEAR
  • [4] Auguste P, 2011, HEALTH TECHNOL ASSES, V15, P1, DOI 10.3310/hta15180
  • [5] BIASES IN THE ASSESSMENT OF DIAGNOSTIC-TESTS
    BEGG, CB
    [J]. STATISTICS IN MEDICINE, 1987, 6 (04) : 411 - 423
  • [6] Bossuyt Patrick M M, 2009, Med Decis Making, V29, pE30, DOI 10.1177/0272989X09347013
  • [7] Meta-analysis of diagnostic accuracy studies accounting for disease prevalence: Alternative parameterizations and model selection
    Chu, Haitao
    Nie, Lei
    Cole, Stephen R.
    Poole, Charles
    [J]. STATISTICS IN MEDICINE, 2009, 28 (18) : 2384 - 2399
  • [8] Comprehensive decision analytical modelling in economic evaluation: a Bayesian approach
    Cooper, NJ
    Sutton, AJ
    Abrams, KR
    Turner, D
    Wailoo, A
    [J]. HEALTH ECONOMICS, 2004, 13 (03) : 203 - 226
  • [9] Survey of the methods and reporting practices in published meta-analyses of test performance: 1987 to 2009
    Dahabreh, Issa J.
    Chung, Mei
    Kitsios, Georgios D.
    Terasawa, Teruhiko
    Raman, Gowri
    Tatsioni, Athina
    Tobar, Annette
    Lau, Joseph
    Trikalinos, Thomas A.
    Schmid, Christopher H.
    [J]. RESEARCH SYNTHESIS METHODS, 2013, 4 (03) : 242 - 255
  • [10] Evidence Synthesis for Decision Making 6: Embedding Evidence Synthesis in Probabilistic Cost-effectiveness Analysis
    Dias, Sofia
    Sutton, Alex J.
    Welton, Nicky J.
    Ades, A. E.
    [J]. MEDICAL DECISION MAKING, 2013, 33 (05) : 671 - 678