Ethylene detection in fruit supply chains

被引:77
作者
Janssen, S. [1 ,2 ,3 ]
Schmitt, K. [6 ]
Blanke, M. [5 ]
Bauersfeld, M. L. [6 ]
Woellenstein, J. [4 ,6 ]
Lang, W. [1 ,2 ,3 ]
机构
[1] Univ Bremen, Inst Microsensors Actuators & Syst IMSAS, D-28359 Bremen, 2, Germany
[2] MCB, Bremen, Germany
[3] Bremen Res Cluster Dynam Logist LogDynam, Bremen, Germany
[4] Univ Freiburg, Dept Microsyst Engn, D-79106 Freiburg, Germany
[5] Univ Bonn, INRES Hort Sci, Bonn, Germany
[6] Fraunhofer Inst Phys Measurement Tech IPM, Freiburg, Germany
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2014年 / 372卷 / 2017期
关键词
ethylene; ethene; gas analytics; electrochemical sensors; gas chromatography; non-dispersive infrared; PHOTOACOUSTIC CELL; GAS; SENSOR; EXPRESSION; SPECTROMETER;
D O I
10.1098/rsta.2013.0311
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Ethylene is a gaseous ripening phytohormone of fruits and plants. Presently, ethylene is primarily measured with stationary equipment in laboratories. Applying in situ measurement at the point of natural ethylene generation has been hampered by the lack of portable units designed to detect ethylene at necessary resolutions of a few parts per billion. Moreover, high humidity inside controlled atmosphere stores or containers complicates the realization of gas sensing systems that are sufficiently sensitive, reliable, robust and cost efficient. In particular, three measurement principles have shown promising potential for fruit supply chains and were used to develop independent mobile devices: non-dispersive infrared spectroscopy, miniaturized gas chromatography and electrochemical measurement. In this paper, the measurement systems for ethylene are compared with regard to the needs in fruit logistics; i.e. sensitivity, selectivity, long-term stability, facilitation of automated measurement and suitability for mobile application. Resolutions of 20-10 ppb can be achieved in mobile applications with state-of-theart equipment, operating with the three methods described in the following. The prices of these systems are in a range below (sic)10 000.
引用
收藏
页数:21
相关论文
共 53 条
[1]  
Abeles F. B., 1992, ETHYLENE PLANT BIOL
[2]  
ABSOGER, ETH AN
[3]   SnO2 Nanoparticle-Based Passive Capacitive Sensor for Ethylene Detection [J].
Agarwal, Mangilal ;
Balachandran, Mercyma D. ;
Shrestha, Sudhir ;
Varahramyan, Kody .
JOURNAL OF NANOMATERIALS, 2012, 2012
[4]  
Airmet Scientific, EXPL PORT GAS CHROM
[5]   Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection [J].
Bijnen, FGC ;
Reuss, J ;
Harren, FJM .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1996, 67 (08) :2914-2923
[6]  
Blanke M, 2008, ERWERBS-OBSTBAU, V50, P77, DOI 10.1007/s10341-008-0064-1
[7]   Gold Nanoparticles and Sensor Technology for Sensitive Ethylene Detection [J].
Blanke, M. M. ;
Shekarriz, R. .
XXVIII INTERNATIONAL HORTICULTURAL CONGRESS ON SCIENCE AND HORTICULTURE FOR PEOPLE (IHC2010): INTERNATIONAL SYMPOSIUM ON POSTHARVEST TECHNOLOGY IN THE GLOBAL MARKET, 2012, 934 :255-262
[8]   Current methods for detecting ethylene in plants [J].
Cristescu, Simona M. ;
Mandon, Julien ;
Arslanov, Denis ;
De Pessemier, Jerome ;
Hermans, Christian ;
Harren, Frans J. M. .
ANNALS OF BOTANY, 2013, 111 (03) :347-360
[9]   Airborne Measurements of Ethene from Industrial Sources Using Laser Photo-Acoustic Spectroscopy [J].
De Gouw, J. A. ;
Hekkert, S. Te Lintel ;
Mellqvist, J. ;
Warneke, C. ;
Atlas, E. L. ;
Fehsenfeld, F. C. ;
Fried, A. ;
Frost, G. J. ;
Harren, F. J. M. ;
Holloway, J. S. ;
Lefer, B. ;
Lueb, R. ;
Meagher, J. F. ;
Parrish, D. D. ;
Patel, M. ;
Pope, L. ;
Richter, D. ;
Rivera, C. ;
Ryerson, T. B. ;
Samuelsson, J. ;
Walega, J. ;
Washenfelder, R. A. ;
Weibring, P. ;
Zhu, X. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2009, 43 (07) :2437-2442
[10]   Beta-amylase expression and starch degradation during banana ripening [J].
do Nascimento, JRO ;
Júnior, AV ;
Bassinello, PZ ;
Cordenunsi, BR ;
Mainardi, JA ;
Purgatto, E ;
Lajolo, FM .
POSTHARVEST BIOLOGY AND TECHNOLOGY, 2006, 40 (01) :41-47