High Order Extensions of Roe Schemes for Two-Dimensional Nonconservative Hyperbolic Systems

被引:77
作者
Castro, M. J. [1 ]
Fernandez-Nieto, E. D. [2 ]
Ferreiro, A. M. [3 ]
Garcia-Rodriguez, J. A. [3 ]
Pares, C. [1 ]
机构
[1] Univ Malaga, Dpto Anal Matemat, Malaga 29080, Spain
[2] Univ Seville, Dpto Matemat Aplicada 1, E-41012 Seville, Spain
[3] Univ A Coruna, Dpto Matemat, La Coruna 15071, Spain
关键词
Generalized Roe schemes; 2d Nonconservative hyperbolic systems; Nonconservative products; Finite volume schemes; Conservation laws; Source terms; Shallow water systems; Two-layer problems; Geophysical flows; FINITE-VOLUME SCHEMES; SHALLOW-WATER SYSTEMS; WELL-BALANCED SCHEME; CONSERVATION-LAWS; SOURCE TERMS; EQUATIONS; PRODUCTS; RECONSTRUCTION; PROPERTY; FLUXES;
D O I
10.1007/s10915-008-9250-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the development of well-balanced high order Roe methods for two-dimensional nonconservative hyperbolic systems. In particular, we are interested in extending the methods introduced in (Castro et al., Math. Comput. 75:1103-1134, 2006) to the two-dimensional case. We also investigate the well-balance properties and the consistency of the resulting schemes. We focus in applications to one and two layer shallow water systems.
引用
收藏
页码:67 / 114
页数:48
相关论文
共 32 条
[1]  
[Anonymous], 1967, Mat. Sb, V73, P255
[2]  
[Anonymous], 1989, 593 I MATH ITS APPL
[3]   MAXIMAL 2-LAYER EXCHANGE THROUGH A CONTRACTION WITH BAROTROPIC NET FLOW [J].
ARMI, L ;
FARMER, DM .
JOURNAL OF FLUID MECHANICS, 1986, 164 :27-51
[4]   UPWIND METHODS FOR HYPERBOLIC CONSERVATION-LAWS WITH SOURCE TERMS [J].
BERMUDEZ, A ;
VAZQUEZ, E .
COMPUTERS & FLUIDS, 1994, 23 (08) :1049-1071
[5]   High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products.: Applications to shallow-water systems [J].
Castro, Manuel ;
Gallardo, Jose E. M. ;
Pares, Carlos .
MATHEMATICS OF COMPUTATION, 2006, 75 (255) :1103-1134
[6]   Why many theories of shock waves are necessary:: Convergence error in formally path-consistent schemes [J].
Castro, Manuel J. ;
LeFloch, Philippe G. ;
Munoz-Ruiz, Maria Luz ;
Pares, Carlos .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (17) :8107-8129
[7]   The numerical treatment of wet/dry fronts in shallow flows:: Application to one-layer and two-layer systems [J].
Castro, MJ ;
Ferreiro, AMF ;
García-Rodríguez, JA ;
González-Vida, JM ;
Macías, J ;
Parés, C ;
Vázquez-Cendón, ME .
MATHEMATICAL AND COMPUTER MODELLING, 2005, 42 (3-4) :419-439
[8]  
CASTRO MJ, 2008, COEFFICIENT SP UNPUB
[9]  
DalMaso G, 1995, J MATH PURE APPL, V74, P483
[10]  
Godlewski E., 1996, APPL MATH SCI, V118