Visual object tracking via enhanced structural correlation filter

被引:28
作者
Chen, Kai [1 ]
Tao, Wenbing [1 ]
Han, Shoudong [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Automat, Natl Key Lab Sci & Technol Multispectral Informat, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Visual tracking; Correlation filter; Object-surrounding histogram model; Object-scale estimation;
D O I
10.1016/j.ins.2017.02.012
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this study, we aim to build a robust correlation-based visual object tracking system. The function of traditional correlation filters for visual tracking is to search the most likely position of target by circularly shifting the search image patch. However, the search image patch needs to be large enough to cover both the object and background, which results in the algorithm being sensitive to changes in background. To alleviate this problem, we first propose an efficient object-surrounding histogram model to suppress the background. In this model, we build a Bayes classifier based on the initial given object, and we then apply it to each pixel in subsequent frames. With this model, the original image can be enhanced in order to eliminate the impact of circular shifting. Moreover, we develop a structural correlation filter that consists of both holistic and local object parts. The multiple object parts are adaptively weighted and further aggregated to predict the relative motion from the last frame. We conduct extensive experiments on frequently used benchmarks with 51 video sequences. The experimental results show that the proposed algorithm achieves outstanding performance, especially in terms of heavy occlusion and severe deformation. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:232 / 245
页数:14
相关论文
共 20 条
[1]   Multiple object tracking with partial occlusion handling using salient feature points [J].
Ali, M. M. Naushad ;
Abdullah-Al-Wadud, M. ;
Lee, Seok-Lyong .
INFORMATION SCIENCES, 2014, 278 :448-465
[2]  
Ali S, 2008, LECT NOTES COMPUT SC, V5303, P1, DOI 10.1007/978-3-540-88688-4_1
[3]  
[Anonymous], 2014, BRIT MACH VIS C
[4]   Robust Object Tracking with Online Multiple Instance Learning [J].
Babenko, Boris ;
Yang, Ming-Hsuan ;
Belongie, Serge .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (08) :1619-1632
[5]  
Bao CL, 2012, PROC CVPR IEEE, P1830, DOI 10.1109/CVPR.2012.6247881
[6]  
Bolme DS, 2010, PROC CVPR IEEE, P2544, DOI 10.1109/CVPR.2010.5539960
[7]   Robust Visual Tracking Using an Adaptive Coupled-Layer Visual Model [J].
Cehovin, Luka ;
Kristan, Matej ;
Leonardis, Ales .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (04) :941-953
[8]   Histograms of oriented gradients for human detection [J].
Dalal, N ;
Triggs, B .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, :886-893
[9]   Adaptive Color Attributes for Real-Time Visual Tracking [J].
Danelljan, Martin ;
Khan, Fahad Shahbaz ;
Felsberg, Michael ;
van de Weijer, Joost .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :1090-1097
[10]  
Dinh TB, 2011, PROC CVPR IEEE, P1177, DOI 10.1109/CVPR.2011.5995733