Isogeometric analysis of functionally graded plates using a refined plate theory

被引:159
作者
Nguyen-Xuan, H. [1 ]
Tran, Loc V. [2 ]
Thai, Chien H. [2 ]
Kulasegaram, S. [3 ]
Bordas, S. P. A. [3 ,4 ]
机构
[1] Univ Sci, Fac Math & Comp Sci, Dept Mech, VNU HCMC, Ho Chi Minh City 700000, Vietnam
[2] Ton Duc Thang Univ, Div Computat Mech, Ho Chi Minh City, Vietnam
[3] Cardiff Univ, Sch Engn, Inst Mech & Adv Mat, Cardiff CF24 3AA, S Glam, Wales
[4] Univ Luxembourg, Fac Sci Technol & Commun, L-1359 Luxembourg, Luxembourg
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
Plates; Buckling; Vibration; Computational modeling; FGM; SHEAR DEFORMATION-THEORY; HIGHER-ORDER SHEAR; FREE-VIBRATION ANALYSES; LAMINATED COMPOSITE; BUCKLING ANALYSIS; SANDWICH PLATES; ELASTIC FOUNDATIONS; ELEMENT; STRESS; MODEL;
D O I
10.1016/j.compositesb.2014.04.001
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present in this paper a simple and effective approach that incorporates isogeometric finite element analysis (IGA) with a refined plate theory (RPT) for static, free vibration and buckling analysis of functionally graded material (FGM) plates. A new inverse tangent distributed function through the plate thickness is proposed. The RPT enables us to describe the non-linear distribution of shear stresses through the plate thickness without any requirement of shear correction factors (SCF). IGA utilizes basis functions namely B-splines or non-uniform rational B-splines (NURBS) which reach easily the smoothness of any arbitrary order. It hence satisfies the C-1 requirement of the RPT model. The present method approximates the displacement field with four degrees of freedom per each control point allowing an efficient solution process. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:222 / 234
页数:13
相关论文
共 66 条
[1]  
Akbari A, 2010, CMES-COMP MODEL ENG, V65, P27
[2]   A zigzag model for laminated composite beams [J].
Arya, H ;
Shimpi, RP ;
Naik, NK .
COMPOSITE STRUCTURES, 2002, 56 (01) :21-24
[3]   Free vibration analysis of functionally graded plates resting on Winkler-Pasternak elastic foundations using a new shear deformation theory [J].
Atmane, Hassen Ait ;
Tounsi, Abdelouahed ;
Mechab, Ismail ;
Bedia, El Abbas Adda .
INTERNATIONAL JOURNAL OF MECHANICS AND MATERIALS IN DESIGN, 2010, 6 (02) :113-121
[4]   A fully "locking-free" isogeometric approach for plane linear elasticity problems: A stream function formulation [J].
Auricchio, F. ;
da Veiga, L. Beirao ;
Buffa, A. ;
Lovadina, C. ;
Reali, A. ;
Sangalli, G. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 197 (1-4) :160-172
[5]   A new shear deformation theory for laminated composite plates [J].
Aydogdu, Metin .
COMPOSITE STRUCTURES, 2009, 89 (01) :94-101
[6]   A 4-NODE PLATE BENDING ELEMENT BASED ON MINDLIN REISSNER PLATE-THEORY AND A MIXED INTERPOLATION [J].
BATHE, KJ ;
DVORKIN, EN .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1985, 21 (02) :367-383
[7]   A four variable refined plate theory for free vibrations of functionally graded plates with arbitrary gradient [J].
Benachour, Abdelkader ;
Tahar, Hassaine Daouadji ;
Atmane, Hassen Ait ;
Tounsi, Abdelouahed ;
Ahmed, Meftah Sid .
COMPOSITES PART B-ENGINEERING, 2011, 42 (06) :1386-1394
[8]   A unified approach for shear-locking-free triangular and rectangular shell finite elements [J].
Bletzinger, KU ;
Bischoff, M ;
Ramm, E .
COMPUTERS & STRUCTURES, 2000, 75 (03) :321-334
[9]   Variable kinematic model for the analysis of functionally graded material plates [J].
Carrera, E. ;
Brischetto, S. ;
Robaldo, A. .
AIAA JOURNAL, 2008, 46 (01) :194-203
[10]   Effects of thickness stretching in functionally graded plates and shells [J].
Carrera, E. ;
Brischetto, S. ;
Cinefra, M. ;
Soave, M. .
COMPOSITES PART B-ENGINEERING, 2011, 42 (02) :123-133