Multiplicity and concentration of solutions for a quasilinear Choquard equation

被引:54
作者
Alves, Claudianor O. [1 ]
Yang, Minbo [2 ]
机构
[1] Univ Fed Campina Grande, Dept Matemat, BR-58429900 Campina Grande, PB, Brazil
[2] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
关键词
NONLINEAR SCHRODINGER-EQUATIONS; BOUND-STATES; SEMICLASSICAL STATES; POSITIVE SOLUTIONS; EXISTENCE; GASES;
D O I
10.1063/1.4884301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study a quasilinear Choquard equation involving the p-laplacian operator and a potential function V. Under suitable assumptions on V and the nonlinearity, we prove the existence, multiplicity, and concentration of solutions for the equation by variational methods. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:21
相关论文
共 44 条
[1]   On a periodic Schrodinger equation with nonlocal superlinear part [J].
Ackermann, N .
MATHEMATISCHE ZEITSCHRIFT, 2004, 248 (02) :423-443
[2]  
Alves CO, 2006, DIFFER INTEGRAL EQU, V19, P143
[3]  
Alves CO, 2005, ADV NONLINEAR STUD, V5, P73
[4]  
Alves CO, 2002, COMMUN PURE APPL ANA, V1, P417
[5]   Semiclassical states of nonlinear Schrodinger equations [J].
Ambrosetti, A ;
Badiale, M ;
Cingolani, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 140 (03) :285-300
[6]   Multiplicity results for some nonlinear Schrodinger equations with potentials [J].
Ambrosetti, A ;
Malchiodi, A ;
Secchi, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 159 (03) :253-271
[7]  
Ambrosetti A, 2007, CONTEMP MATH, V446, P19
[8]  
[Anonymous], 2001, ANALYSIS-UK
[9]  
[Anonymous], 1997, Topol. Methods Nonlinear Anal, DOI DOI 10.12775/TMNA.1997.019
[10]  
[Anonymous], ANN ACAD SCI FENIN A