Bimodule and twisted representation of vertex operator algebras

被引:3
作者
Jiang QiFen [1 ]
Jiao XiangYu [2 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
[2] E China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金;
关键词
bimodule; g-twisted module; vertex operator algebra; intertwining operator; fusion rules; MODULAR-INVARIANCE; STRINGS;
D O I
10.1007/s11425-015-5033-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, for a vertex operator algebra V with an automorphism g of order T, an admissible V-module M and a fixed nonnegative rational number n is an element of 1/TZ(+), we construct an A(g,n)(V)-bimodule A(g,n)(M) and study its properties, discuss the connections between bimodule A(g,n)(M) and intertwining operators. Especially, bimodule A(g,n-1T) (M) is a natural quotient of A(g,n)(M) and there is a linear isomorphism between the space I-MMj(Mk) of intertwining operators and the space of homomorphisms Hom(Ag,n(V))(A(g,n)(M) circle times A(g,n)(V) M-j(s), M-k(t)) for s, t <= n, M-j, M-k are g-twisted V modules, if V is g-rational.
引用
收藏
页码:397 / 410
页数:14
相关论文
共 50 条
[21]   The varieties of Heisenberg vertex operator algebras [J].
Chu YanJun ;
Lin ZongZhu .
SCIENCE CHINA-MATHEMATICS, 2017, 60 (03) :379-400
[22]   Mirror Extensions of Vertex Operator Algebras [J].
Chongying Dong ;
Xiangyu Jiao ;
Feng Xu .
Communications in Mathematical Physics, 2014, 329 :263-294
[23]   Vertex operator algebras and the Verlinde conjecture [J].
Huang, Yi-Zhi .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (01) :103-154
[24]   Schottky vertex operator cluster algebras [J].
Zuevsky, A. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2022, 37 (17)
[25]   Hopf actions on vertex operator algebras [J].
Dong, Chongying ;
Wang, Hao .
JOURNAL OF ALGEBRA, 2018, 514 :310-329
[26]   Vertex operator algebras and representations of affine Lie algebras [J].
Meurman, A ;
Primc, M .
ACTA APPLICANDAE MATHEMATICAE, 1996, 44 (1-2) :207-215
[27]   Representations of vertex operator algebras and bimodules [J].
Dong, Chongying ;
Ren, Li .
JOURNAL OF ALGEBRA, 2013, 384 :212-226
[28]   Mirror Extensions of Vertex Operator Algebras [J].
Dong, Chongying ;
Jiao, Xiangyu ;
Xu, Feng .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 329 (01) :263-294
[29]   RIEMANN SURFACES AND VERTEX OPERATOR ALGEBRAS [J].
Bugajska, K. M. .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2012, 9 (08)
[30]   Representations of the parafermion vertex operator algebras [J].
Dong, Chongying ;
Ren, Li .
ADVANCES IN MATHEMATICS, 2017, 315 :88-101