Bimodule and twisted representation of vertex operator algebras

被引:1
|
作者
Jiang QiFen [1 ]
Jiao XiangYu [2 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
[2] E China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金;
关键词
bimodule; g-twisted module; vertex operator algebra; intertwining operator; fusion rules; MODULAR-INVARIANCE; STRINGS;
D O I
10.1007/s11425-015-5033-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, for a vertex operator algebra V with an automorphism g of order T, an admissible V-module M and a fixed nonnegative rational number n is an element of 1/TZ(+), we construct an A(g,n)(V)-bimodule A(g,n)(M) and study its properties, discuss the connections between bimodule A(g,n)(M) and intertwining operators. Especially, bimodule A(g,n-1T) (M) is a natural quotient of A(g,n)(M) and there is a linear isomorphism between the space I-MMj(Mk) of intertwining operators and the space of homomorphisms Hom(Ag,n(V))(A(g,n)(M) circle times A(g,n)(V) M-j(s), M-k(t)) for s, t <= n, M-j, M-k are g-twisted V modules, if V is g-rational.
引用
收藏
页码:397 / 410
页数:14
相关论文
共 50 条