The contact magnetic flow in 3D Sasakian manifolds

被引:78
作者
Cabrerizo, J. L. [1 ]
Fernandez, M. [1 ]
Gomez, J. S. [1 ]
机构
[1] Univ Seville, Dept Geometry & Topol, Seville 41080, Spain
关键词
VECTOR CROSS PRODUCTS;
D O I
10.1088/1751-8113/42/19/195201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We first present a geometrical approach to magnetic fields in three-dimensional Riemannian manifolds, because this particular dimension allows one to easily tie vector fields and 2-forms. When the vector field is divergence free, it defines a magnetic field on the manifold whose Lorentz force equation presents a simple and useful form. In particular, for any three-dimensional Sasakian manifold the contact magnetic field is studied and the normal magnetic trajectories are determined. As an application, we consider the three-dimensional unit sphere, where we prove the existence of closed magnetic trajectories of the contact magnetic field, and that this magnetic flow is quantized in the set of rational numbers.
引用
收藏
页数:10
相关论文
共 20 条
[11]  
Hirzebruch F., 1960, P INT C MATH 1958, P119
[12]  
Kalinin D. A., 1997, Reports on Mathematical Physics, V39, P299, DOI 10.1016/S0034-4877(97)89750-9
[13]  
Martinet J, 1971, Proceedings of Liverpool Singularities Symposium, V209, P142
[14]  
Matzeu P., 2002, REND MAT APPL 7, V22, P359
[15]   HOPF TORI IN S3 [J].
PINKALL, U .
INVENTIONES MATHEMATICAE, 1985, 81 (02) :379-386
[16]  
Spivak M.D., 1970, A comprehensive introduction to differential geometry
[17]   The Seiberg-Witten equations and the Weinstein conjecture [J].
Taubes, Clifford Henry .
GEOMETRY & TOPOLOGY, 2007, 11 :2117-2202
[18]  
TIDE B, 2006, ELECTROMAGNETIC FIEL
[19]   The Hopf fibration - seven times in physics [J].
Urbantke, HK .
JOURNAL OF GEOMETRY AND PHYSICS, 2003, 46 (02) :125-150
[20]   HYPOTHESES OF RABINOWITZ PERIODIC ORBIT THEOREMS [J].
WEINSTEIN, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1979, 33 (03) :353-358