Resistance of Helicoverpa armigera to Cry1Ac toxin from Bacillus thuringiensis is due to improper processing of the protoxin

被引:59
作者
Rajagopal, Raman [1 ]
Arora, Naresh [1 ]
Sivakumar, Swaminathan [1 ]
Rao, Nagarjun G. V. [2 ]
Nimbalkar, Sharad A. [2 ]
Bhatnagar, Raj K. [1 ]
机构
[1] Int Ctr Genet Engn & Biotechnol, Insect Resistance Grp, New Delhi 110067, India
[2] Dr Panajbrao Deshmukh Agr Univ Dr PDKV, Div Entomol, Akola 444104, India
关键词
Cry; 1Ac; insect; insecticide; pest management; toxin; trypsin; HELIOTHIS-VIRESCENS LEPIDOPTERA; INSECT RESISTANCE; COTTON BOLLWORM; NOCTUIDAE; CROPS; MECHANISM; COMPLEX; PROTEIN; STRAIN; CRY2AA;
D O I
10.1042/BJ20081152
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The bacterium Bacillus thuringiensis produces ICPs (insecticidal crystal proteins) that are deposited in their spore mother cells. When susceptible lepidopteran larvae ingest these spore mother cells, the ICPs get solubilized in the alkaline gut environment. Of approx. 140 insecticidal proteins described thus far, insecticidal protein Cry1Ac has been applied extensively as the main ingredient of spray formulation as well as the principal ICP introduced into crops as transgene for agricultural crop protection. The 135 kDa Cry1Ac protein, upon ingestion by the insect, is processed successively at the N- and C-terminus by the insect midgut proteases to generate it 65 kDa bioactive core protein. The activated core protein interacts with specific receptors located at the midgut epithilium resulting in the lysis of cells and eventual death of the larvae. A laboratory-reared population of Helicoverpa armigera displayed 72-fold resistance to the B. thuringiensis insecticidal protein Cry1Ac. A careful zymogram analysis of Cry1Ac-resistant insects revealed an altered proteolytic profile. The altered protease profile resulted in improper processing of the insecticidal protein and as a consequence increased the LC50 concentrations of Cry1Ac. The 135 kDa protoxin-susceptible insect larval population processed the protein to the biologically active 65 kDa core protein, while the resistant insect larval population yielded a mixture of 95 kDa and 68 Wit Cry1Ac polypeptides. N-terminal sequencing of these 95 and 68 kDa polypeptides produced by gut juices of resistant insects revealed an intact N-terminus. Protease gene transcription profiling by semi-quantitative RT (reverse transcription)-PCR led to the identification of a down-regulated HaSP2 (H. armigera serine protease 2) in the Cry1Ac-resistant population. Protease HaSP2 was cloned, expressed and demonstrated to be responsible for proper processing of insecticidal protoxin. The larval population displaying resistance to Cry1Ac do not show an altered sensitivity against another insecticidal protein, Cry2Ab. The implications of these observations in the context of the possibility of development of resistance and its management in H. armigera to Cry1Ac through transgenic crop cultivation are discussed.
引用
收藏
页码:309 / 316
页数:8
相关论文
共 29 条
[1]  
*APCOAB, 2006, PERF BT COTT BT COTT, P22
[2]   Differentially regulated inhibitor-sensitive and insensitive protease genes from the phytophagous insect pest, Helicoverpa armigara, are members of complex multigene families [J].
Bown, DP ;
Wilkinson, HS ;
Gatehouse, JA .
INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY, 1997, 27 (07) :625-638
[3]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[4]   N-terminal activation is an essential early step in the mechanism of action of the Bacillus thuringiensis Cry1Ac insecticidal toxin. [J].
Bravo, A ;
Sánchez, J ;
Kouskoura, T ;
Crickmore, N .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (27) :23985-23987
[5]   Genetic basis of resistance to Cry1Ac and Cry2Aa in Heliothis virescens (Lepidoptera: Noctuidae) [J].
Gahan, LJ ;
Ma, YT ;
Coble, MLM ;
Gould, F ;
Moar, WJ ;
Heckel, DG .
JOURNAL OF ECONOMIC ENTOMOLOGY, 2005, 98 (04) :1357-1368
[6]   Identification of a gene associated with bit resistance in Heliothis virescens [J].
Gahan, LJ ;
Gould, F ;
Heckel, DG .
SCIENCE, 2001, 293 (5531) :857-860
[7]   Sustainability of transgenic insecticidal cultivars: Integrating pest genetics and ecology [J].
Gould, F .
ANNUAL REVIEW OF ENTOMOLOGY, 1998, 43 :701-726
[8]   SELECTION AND GENETIC-ANALYSIS OF A HELIOTHIS-VIRESCENS (LEPIDOPTERA, NOCTUIDAE) STRAIN WITH HIGH-LEVELS OF RESISTANCE TO BACILLUS-THURINGIENSIS TOXINS [J].
GOULD, F ;
ANDERSON, A ;
REYNOLDS, A ;
BUMGARNER, L ;
MOAR, W .
JOURNAL OF ECONOMIC ENTOMOLOGY, 1995, 88 (06) :1545-1559
[9]   BROAD-SPECTRUM RESISTANCE TO BACILLUS-THURINGIENSIS TOXINS IN HELIOTHIS-VIRESCENS [J].
GOULD, F ;
MARTINEZRAMIREZ, A ;
ANDERSON, A ;
FERRE, J ;
SILVA, FJ ;
MOAR, WJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (17) :7986-7990
[10]   New resistance mechanism in Helicoverpa armigera threatens transgenic crops expressing Bacillus thuringiensis Cry1Ac toxin [J].
Gunning, RV ;
Dang, HT ;
Kemp, FC ;
Nicholson, IC ;
Moores, GD .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2005, 71 (05) :2558-2563