A MAXIMUM PRINCIPLE FOR OPTIMAL CONTROL OF STOCHASTIC EVOLUTION EQUATIONS

被引:46
作者
Du, Kai [1 ]
Meng, Qingxin [2 ]
机构
[1] ETH, Dept Math, CH-8092 Zurich, Switzerland
[2] Huzhou Univ, Dept Math Sci, Huzhou 31300, Zhejiang, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
maximum principle; stochastic evolution equation; L-p estimate; stochastic bilinear functional; operator-valued stochastic process; SYSTEMS;
D O I
10.1137/120882433
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A general maximum principle is proved for optimal controls of abstract semilinear stochastic evolution equations. The control variable and linear unbounded operators act in both drift and diffusion terms, and the control set need not be convex.
引用
收藏
页码:4343 / 4362
页数:20
相关论文
共 16 条
[1]   STOCHASTIC MAXIMUM PRINCIPLE FOR DISTRIBUTED PARAMETER-SYSTEMS [J].
BENSOUSSAN, A .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1983, 315 (5-6) :387-406
[2]  
Chow P., 2007, STOCHASTIC PARTIAL D, V11
[3]  
Doob J., 1953, STOCHASTIC PROCESSES
[4]   A revisit to W2n-theory of super-parabolic backward stochastic partial differential equations in Rd [J].
Du, Kai ;
Meng, Qingxin .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2010, 120 (10) :1996-2015
[5]   Stochastic maximum principle for optimal control of SPDEs [J].
Fuhrman, Marco ;
Hu, Ying ;
Tessitore, Gianmario .
COMPTES RENDUS MATHEMATIQUE, 2012, 350 (13-14) :683-688
[6]  
He S. W., 1992, Semimartingale theory and stochastic calculus
[7]  
Hu Y, 1990, STOCHASTICS STOCHAST, V33, P159
[8]  
KRYLOV N. V., 1981, Journal of Soviet mathematics, V14, P1233
[9]  
Lu Q., 2012, PREPRINT
[10]   A GENERAL STOCHASTIC MAXIMUM PRINCIPLE FOR OPTIMAL-CONTROL PROBLEMS [J].
PENG, SG .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1990, 28 (04) :966-979