Mass transportation and rough curvature bounds for discrete spaces

被引:56
作者
Bonciocat, Anca-Iuliana [2 ]
Sturm, Karl-Theodor [1 ]
机构
[1] Univ Bonn, Inst Appl Math, D-53115 Bonn, Germany
[2] Acad Romana, Inst Math S Stoilow, Bucharest 014700, Romania
关键词
Optimal transport; Ricci curvature; GH-limits; Graphs; Concentration of measure; RICCI CURVATURE; INEQUALITIES; COST;
D O I
10.1016/j.jfa.2009.01.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce and study rough (approximate) lower curvature bounds for discrete spaces and for graphs. This notion agrees with the one introduced in [J. Lott, C. Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. 169 (2009), in press] and [K.T. Sturm, On the geometry of metric measure spaces. I, Acta Math. 196 (2006) 65-131], in the sense that the metric measure space which is approximated by a sequence of discrete spaces with rough curvature >= K will have curvature >= K in the sense of [J. Lott, C. Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. 169 (2009), in press; K.T. Sturm, On the geometry of metric measure spaces. I, Acta Math. 196 (2006) 65-131]. Moreover, in the converse direction, discretizations of metric measure spaces with curvature >= K will have rough curvature >= K. We apply our results to concrete examples of homogeneous planar graphs. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:2944 / 2966
页数:23
相关论文
共 15 条
[1]  
[Anonymous], 2001, MATH SURVEYS MONOGR
[2]   Exponential integrability and transportation cost related to logarithmic sobolev inequalities [J].
Bobkov, SG ;
Götze, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 163 (01) :1-28
[3]  
DUDLEY RM, 1989, W BROOKSCOLE MATH SE
[4]   Bochner's method for cell complexes and combinatorial Ricci curvature [J].
Forman, R .
DISCRETE & COMPUTATIONAL GEOMETRY, 2003, 29 (03) :323-374
[5]   COLLAPSING OF RIEMANNIAN-MANIFOLDS AND EIGENVALUES OF LAPLACE OPERATOR [J].
FUKAYA, K .
INVENTIONES MATHEMATICAE, 1987, 87 (03) :517-547
[6]  
Gromov M., 1987, Math. Sci. Res. Inst. Publ., V8, P75, DOI 10.1007/978-1-4613-9586-7_3
[7]   Combinatorial curvature for planar graphs [J].
Higuchi, Y .
JOURNAL OF GRAPH THEORY, 2001, 38 (04) :220-229
[8]  
LOTT J, 2009, ANN MATH IN PRESS, V169
[9]   A measure concentration inequality for contracting Markov chains [J].
Marton, K .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1996, 6 (03) :556-571
[10]   Ricci curvature of Markov chains on metric spaces [J].
Ollivier, Yann .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (03) :810-864