Shortest noncrossing paths in plane graphs

被引:13
|
作者
Takahashi, JY [1 ]
Suzuki, H [1 ]
Nishizeki, T [1 ]
机构
[1] TOHOKU UNIV, GRAD SCH INFORMAT SCI, SENDAI, MIYAGI 98077, JAPAN
关键词
noncrossing paths; shortest path; plane graphs; single-layer routing; VLSI;
D O I
10.1007/BF01955681
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Let G be an undirected plane graph with nonnegative edge length, and let k terminal pairs Lie on two specified face boundaries. This paper presents an algorithm for finding k ''noncrossing paths'' in G, each connecting a terminal pair, and whose total length is minimum. Noncrossing paths may share common vertices or edges but do not cross each other in the plane. The algorithm runs in time O(n log n) where n is the number of vertices in G and k is an arbitrary integer.
引用
收藏
页码:339 / 357
页数:19
相关论文
共 50 条
  • [31] Non-crossing shortest paths lengths in planar graphs in linear time
    Balzotti, Lorenzo
    Franciosa, Paolo G.
    DISCRETE APPLIED MATHEMATICS, 2024, 346 : 183 - 191
  • [32] Efficient parallel algorithms for computing all pair shortest paths in directed graphs
    Yijie Han
    V. Y. Pan
    J. H. Reif
    Algorithmica, 1997, 17 : 399 - 415
  • [33] FASTER ALGORITHMS FOR ALL-PAIRS APPROXIMATE SHORTEST PATHS IN UNDIRECTED GRAPHS
    Baswana, Surender
    Kavitha, Telikepalli
    SIAM JOURNAL ON COMPUTING, 2010, 39 (07) : 2865 - 2896
  • [34] Shortest vertex-disjoint two-face paths in planar graphs
    de Verdiere, Eric Colin
    Schrijver, Alexander
    STACS 2008: PROCEEDINGS OF THE 25TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, 2008, : 181 - +
  • [35] The smallest pair of noncrossing paths in a rectilinear polygon
    Yang, CD
    Lee, DT
    Wong, CK
    IEEE TRANSACTIONS ON COMPUTERS, 1997, 46 (08) : 930 - 941
  • [36] New Algorithms and Hardness for Incremental Single-Source Shortest Paths in Directed Graphs
    Gutenberg, Maximilian Probst
    Williams, Virginia Vassilevska
    Wein, Nicole
    PROCEEDINGS OF THE 52ND ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '20), 2020, : 153 - 166
  • [37] AN ALGORITHM FOR THE RANKING OF SHORTEST PATHS
    AZEVEDO, JA
    COSTA, MEOS
    MADEIRA, JJERS
    MARTINS, EQV
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1993, 69 (01) : 97 - 106
  • [38] Computing shortest paths with uncertainty
    Feder, Tomas
    Motwani, Rajeev
    O' Callaghan, Liadan
    Olston, Chris
    Panigrahy, Rina
    JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2007, 62 (01): : 1 - 18
  • [39] APPROXIMATE SHORTEST PATHS AVOIDING A FAILED VERTEX : OPTIMAL SIZE DATA STRUCTURES FOR UNWEIGHTED GRAPHS
    Khanna, Neelesh
    Baswana, Surender
    27TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2010), 2010, 5 : 513 - 524
  • [40] AN AUCTION ALGORITHM FOR SHORTEST PATHS
    Bertsekas, Dimitri P.
    SIAM JOURNAL ON OPTIMIZATION, 1991, 1 (04) : 425 - 447