Monomials of Eisenstein series

被引:4
作者
Griffin, Trevor [1 ]
Kenshur, Nathan [2 ]
Price, Abigail [3 ]
Vandenberg-Daves, Bradshaw [4 ]
Xue, Hui [5 ]
Zhu, Daozhou [5 ]
机构
[1] Univ Idaho, Moscow, ID 83844 USA
[2] Univ Calif Berkeley, Berkeley, CA 94720 USA
[3] Hillsdale Coll, Hillsdale, MI 49242 USA
[4] Vassar Coll, Poughkeepsie, NY 12604 USA
[5] Clemson Univ, Sch Math & Stat Sci, Clemson, SC 29634 USA
基金
美国国家科学基金会;
关键词
Eisenstein series; Zeros; Special values of L-functions; ZEROS;
D O I
10.1016/j.jnt.2020.09.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E-k(z) be the normalized Eisenstein series of weight k for the modular group SL(2, Z). We study the zeros of E-k to prove that the equation Pi(n)(i=1) E-ki = Pi(m)(j=1) E-lj has no solutions, except for those given by known relationships between E-4, E-6, E-8, E-10, and E-14. We go on to discuss some implications of this result. (c) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:445 / 459
页数:15
相关论文
共 12 条
[1]  
Batut C., 1998, User's Guide to PARI-GP Universite Bordeaux
[2]   Zeros of Eisenstein series, quadratic class numbers and supersingularity for rational function fields [J].
Cornelissen, G .
MATHEMATISCHE ANNALEN, 1999, 314 (01) :175-196
[3]  
Duke W, 1999, NUMBER THEORY IN PROGRESS, VOLS 1 AND 2, P737
[4]   Products of an arbitrary number of Hecke eigenforms [J].
Emmons, Brad A. ;
Lanphier, Dominic .
ACTA ARITHMETICA, 2007, 130 (04) :311-319
[5]   Some observations on the arithmetic of Eisenstein series for the modular group SL(2,Ζ) [J].
Gekeler, EU .
ARCHIV DER MATHEMATIK, 2001, 77 (01) :5-21
[6]  
Ghate Eknath., 2000, J. Ramanujan Math. Soc, V15, P71
[7]  
Griffin T., 2020, ZEROS EISENSTEIN SER, DOI 10.5281/zenodo.3887249
[8]  
Hida H, 1997, PAC J MATH, P189
[9]  
Kohnen W., 2004, KYUSHU J MATH, V58, P251
[10]   A separation property of the zeros of Eisenstein series for SL(2, Z) [J].
Nozaki, Hiroshi .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2008, 40 :26-36