Hopf algebras of dimension 14

被引:11
作者
Beattie, M [1 ]
Dascalescu, S
机构
[1] Mt Allison Univ, Dept Math & Comp Sci, Sackville, NB E4L 1E6, Canada
[2] Kuwait Univ, Dept Math, Fac Sci, Kuwait 13060, Kuwait
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2004年 / 69卷
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1112/S0024610703004927
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H be a finite dimensional non-semisimple Hopf algebra over an algebraically closed field k of characteristic 0. If H has no nontrivial skew-primitive elements, some bounds are found for the dimension of H-1, the second term in the coradical filtration of H. Using these results, it is shown that every Hopf algebra of dimension 14 is semisimple and thus isomorphic to a group algebra or the dual of a group algebra. Also a Hopf algebra of dimension pq where p and q are odd primes with p < q less than or equal to 1 + 3p and q less than or equal to 13 is semisimple and thus a group algebra or the dual of a group algebra. Some partial results in the classification problem for dimension 16 are also given.
引用
收藏
页码:65 / 78
页数:14
相关论文
共 28 条
[11]   On semisimple Hopf algebras of dimension pq [J].
Gelaki, S ;
Westreich, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (01) :39-47
[12]   Pointed Hopf algebras of dimension 32 [J].
Graña, M .
COMMUNICATIONS IN ALGEBRA, 2000, 28 (06) :2935-2976
[13]  
Kaplansky I., 1975, LECT NOTES MATH
[14]   Classification of semisimple Hopf algebras of dimension 16 [J].
Kashina, Y .
JOURNAL OF ALGEBRA, 2000, 232 (02) :617-663
[15]   The p(n) theorem for semisimple Hopf algebras [J].
Masuoka, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (03) :735-737
[16]   SEMISIMPLE HOPF-ALGEBRAS OF DIMENSION 2P [J].
MASUOKA, A .
COMMUNICATIONS IN ALGEBRA, 1995, 23 (05) :1931-1940
[17]  
Montgomery S., 1993, C BOARD MATH SCI, V82
[18]   Hopf algebras of dimension 12 [J].
Natale, S .
ALGEBRAS AND REPRESENTATION THEORY, 2002, 5 (05) :445-455
[19]   Non-semisimple Hopf algebras of dimension p2 [J].
Ng, SH .
JOURNAL OF ALGEBRA, 2002, 255 (01) :182-197
[20]  
NG SH, MATHQ0304156