Hopf algebras of dimension 14

被引:11
作者
Beattie, M [1 ]
Dascalescu, S
机构
[1] Mt Allison Univ, Dept Math & Comp Sci, Sackville, NB E4L 1E6, Canada
[2] Kuwait Univ, Dept Math, Fac Sci, Kuwait 13060, Kuwait
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2004年 / 69卷
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1112/S0024610703004927
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H be a finite dimensional non-semisimple Hopf algebra over an algebraically closed field k of characteristic 0. If H has no nontrivial skew-primitive elements, some bounds are found for the dimension of H-1, the second term in the coradical filtration of H. Using these results, it is shown that every Hopf algebra of dimension 14 is semisimple and thus isomorphic to a group algebra or the dual of a group algebra. Also a Hopf algebra of dimension pq where p and q are odd primes with p < q less than or equal to 1 + 3p and q less than or equal to 13 is semisimple and thus a group algebra or the dual of a group algebra. Some partial results in the classification problem for dimension 16 are also given.
引用
收藏
页码:65 / 78
页数:14
相关论文
共 28 条
[1]  
Andruskiewitsch N., 2001, TSUKUBA J MATH, V25, P187
[2]  
ANDRUSKIEWITSCH N, 2002, CONT MATH, V294, P1
[3]   Duals of pointed Hopf algebras [J].
Beattie, M .
JOURNAL OF ALGEBRA, 2003, 262 (01) :54-76
[4]   An isomorphism theorem for ore extension Hopf algebras [J].
Beattie, M .
COMMUNICATIONS IN ALGEBRA, 2000, 28 (02) :569-584
[5]   Classifying pointed Hopf algebras of dimension 16 [J].
Caenepeel, S ;
Dascalescu, S ;
Raianu, S .
COMMUNICATIONS IN ALGEBRA, 2000, 28 (02) :541-568
[6]  
CALINESCU C, IN PRESS J ALGEBRA
[7]  
DASCALESCU S, 2000, MONOGRAPHS PURE APPL, V235
[8]   Semisimple Hopf algebras of dimension pq are trivial [J].
Etingof, P ;
Gelaki, S .
JOURNAL OF ALGEBRA, 1998, 210 (02) :664-669
[9]  
ETINGOF P, MATHQA0303369
[10]  
FUKUDA N, 1997, TSUKUBA J MATH, V21, P43