Investigation on the Catalytic Hydrogenolysis of Lignin over NbOx-Ni/ZnOAl2O3

被引:19
作者
Wang, Yuyang [1 ,2 ]
Wang, Da [1 ]
Li, Xiaoyu [1 ]
Li, Guangci [1 ]
Wang, Zhong [1 ]
Li, Mingshi [2 ]
Li, Xuebing [1 ]
机构
[1] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Key Lab Biofuels, Qingdao 266101, Shandong, Peoples R China
[2] Changzhou Univ, Jiangsu Key Lab Adv Catalyt Mat & Technol, Adv Catalysis & Green Mfg Collaborat Innovat Ctr, Changzhou 213164, Peoples R China
基金
中国国家自然科学基金;
关键词
MODEL COMPOUNDS; DEPOLYMERIZATION; HYDRODEOXYGENATION; HYDROGENATION; OXIDATION; EFFICIENT; GUAIACOL; ETHANOL; RU;
D O I
10.1021/acs.iecr.9b00376
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The catalytic hydrogenolysis of lignin was an important route to depolymerize lignin into aromatic monomer products and other high added value chemicals. Herein, the catalytic hydrogenolysis of poplar lignin was carefully studied in the presence of Nb-m-Ni-n/ZnO-Al2O3 catalysts in methanol solvent. The physicochemical properties of Nb-m-Ni-n/ZnO-Al2O3 catalysts were characterized by N-2 adsorption-desorption, X-ray diffraction, H-2-temperature programmed reduction, transmission electron microscopy, high-angle annular dark-field imaging-scanning transmission electron microscopy, and X-ray photon spectroscopy techniques. The structural properties of the raw lignin, oligomers, and monomers were detected by 2D heteronuclear single-quantum coherence NMR, gas chromatography-mass spectroscopy, and gel permeation chromatography. The Nb-2-Ni-1/ZnO-Al2O3 (Nb/Ni ratio was 2:1) showed the most attractive lignin depolymerization performance, with an 87.1 wt % bio-oil yield and 22.4 wt % phenolic monomer yield. 2-(2-Methoxyphenoxy)-1-(4-methoxyphenyl)ethanone was employed as model compound to deeply study the mechanism of NbOx-Ni/ZnO-Al2O3 catalyzed lignin hydrogenolysis. It was found that the introduction of the Nb species was in favor of breaking the beta-O-4 bond and avoiding the excessive hydrogenation of aromatic rings.
引用
收藏
页码:7866 / 7875
页数:10
相关论文
共 42 条
[11]   Base promoted hydrogenolysis of lignin model compounds and organosolv lignin over metal catalysts in water [J].
Konnerth, Hannelore ;
Zhang, Jiaguang ;
Ma, Ding ;
Prechtl, Martin H. G. ;
Yan, Ning .
CHEMICAL ENGINEERING SCIENCE, 2015, 123 :155-163
[12]   Investigation of the Chemocatalytic and Biocatalytic Valorization of a Range of Different Lignin Preparations: The Importance of β-O-4 Content [J].
Lancefield, Christopher S. ;
Rashid, Goran M. M. ;
Bouxin, Florent ;
Wasak, Agata ;
Tu, Wei-Chien ;
Hallett, Jason ;
Zein, Sharif ;
Rodriguez, Jaime ;
Jackson, S. David ;
Westwood, Nicholas J. ;
Bugg, Timothy D. H. .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2016, 4 (12) :6921-6930
[13]   Catalytic hydrogenation of alkali lignin into bio-oil using flower-like hierarchical MoS2-based composite catalysts [J].
Li, Naixu ;
Wei, Lingfei ;
Bibi, Rehana ;
Chen, Lingyu ;
Liu, Jiahui ;
Zhang, Li ;
Zheng, Yiqun ;
Zhou, Jiancheng .
FUEL, 2016, 185 :532-540
[14]   Enhanced catalytic performances of Ni/Al2O3 catalyst via addition of V2O3 for CO methanation [J].
Liu, Qing ;
Gu, Fangna ;
Lu, Xiaopeng ;
Liu, Youjun ;
Li, Huifang ;
Zhong, Ziyi ;
Xu, Guangwen ;
Su, Fabing .
APPLIED CATALYSIS A-GENERAL, 2014, 488 :37-47
[15]   An efficient and economical process for lignin depolymerization in biomass-derived solvent tetrahydrofuran [J].
Long, Jinxing ;
Zhang, Qi ;
Wang, Tiejun ;
Zhang, Xinghua ;
Xu, Ying ;
Ma, Longlong .
BIORESOURCE TECHNOLOGY, 2014, 154 :10-17
[16]   Highly stable Ni-Al2O3 catalyst prepared from a Ni-Al layered double hydroxide for ethanol decomposition toward hydrogen [J].
Manukyan, Khachatur V. ;
Cross, Allison J. ;
Yeghishyan, Armenuhi V. ;
Rouvimov, Sergei ;
Miller, Jeffrey J. ;
Mukasyan, Alexander S. ;
Wolf, E. E. .
APPLIED CATALYSIS A-GENERAL, 2015, 508 :37-44
[17]   Deactivation characteristics of lanthanide-promoted sol-gel Ni/Al2O3 catalysts in propane steam reforming [J].
Natesakhawat, S ;
Watson, RB ;
Wang, XQ ;
Ozkan, US .
JOURNAL OF CATALYSIS, 2005, 234 (02) :496-508
[18]   Gas-phase hydrodeoxygenation of guaiacol over iron-based catalysts. Effect of gases composition, iron load and supports (silica and activated carbon) [J].
Olcese, R. ;
Bettahar, M. M. ;
Malaman, B. ;
Ghanbaja, J. ;
Tibavizco, L. ;
Petitjean, D. ;
Dufour, A. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2013, 129 :528-538
[19]   A synergistic biorefinery based on catalytic conversion of lignin prior to cellulose starting from lignocellulosic biomass [J].
Parsell, Trenton ;
Yohe, Sara ;
Degenstein, John ;
Jarrell, Tiffany ;
Klein, Ian ;
Gencer, Emre ;
Hewetson, Barron ;
Hurt, Matt ;
Kim, Jeong Im ;
Choudhari, Harshavardhan ;
Saha, Basudeb ;
Meilan, Richard ;
Mosier, Nathan ;
Ribeiro, Fabio ;
Delgass, W. Nicholas ;
Chapple, Clint ;
Kenttamaa, Hilkka I. ;
Agrawal, Rakesh ;
Abu-Omar, Mahdi M. .
GREEN CHEMISTRY, 2015, 17 (03) :1492-1499
[20]   Studies of the synthesis of transition metal phosphides and their activity in the hydrodeoxygenation of a biofuel model compound [J].
Phuong Bui ;
Antonio Cecilia, Juan ;
Oyama, S. Ted. ;
Takagaki, Atsushi ;
Infantes-Molina, Antonia ;
Zhao, Haiyan ;
Li, Dan ;
Rodriguez-Castellon, Enrique ;
Jimenez Lopez, Antonio .
JOURNAL OF CATALYSIS, 2012, 294 :184-198