Use of deep learning models in street-level images to classify one-story unreinforced masonry buildings based on roof diaphragms

被引:12
作者
Rueda-Plata, D. [1 ]
Gonzalez, D. [2 ]
Acevedo, A. B. [2 ]
Duque, J. C. [3 ]
Ramos-Pollan, R. [4 ]
机构
[1] Univ Ind Santander, Sch Phys, CAGE Res Grp, Bucaramanga, Colombia
[2] Univ EAFIT, Dept Civil Engn, Appl Mech Res Grp, Medellin, Colombia
[3] Univ EAFIT, Dept Math Sci, Res Spatial Econ RiSE, Medellin, Colombia
[4] Univ Antioquia, Dept Comp Sci, Intelligent Informat Syst Lab IN2Lab, Medellin, Colombia
关键词
Unreinforced masonry; Diaphragm; Deep learning; Convolutional neural networks; Seismic risk; Risk assessment; Urban planning; SEISMIC RISK-ASSESSMENT;
D O I
10.1016/j.buildenv.2020.107517
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this paper, we explore the potential of convolutional neural networks to classify street-level imagery of one-story unreinforced masonry buildings (MURs) according to the flexibility of the roof diaphragm (rigid or flexible). This information is critical for vulnerability studies, disaster risk assessments, disaster management strategies, etc., and is of great relevance in cities where unreinforced masonry is the most common building typology or where the majority of the population resides in such buildings. Our contribution could be useful for local governments of cities in developing countries seeking to significantly reduce the number of deaths caused by disasters. Our research results indicate that VGG19 is the convolutional neural network architecture with the best performance, with an accuracy of 0.80, a precision of 0.88, and a recall of 0.84. The results are encouraging and could be used to reduce the amount of resources (both human and economic) for the development of detailed exposure models for unreinforced masonry buildings.
引用
收藏
页数:10
相关论文
共 39 条
[1]   Evaluation of the seismic risk of the unreinforced masonry building stock in Antioquia, Colombia [J].
Acevedo, Ana B. ;
Jaramillo, Juan D. ;
Yepes, Catalina ;
Silva, Vitor ;
Osorio, Fernando A. ;
Villar, Mabe .
NATURAL HAZARDS, 2017, 86 :31-54
[2]   Object-based building damage assessment methodology using only post event ALOS-2/PALSAR-2 dual polarimetric SAR intensity images [J].
Bai Y. ;
Adriano B. ;
Mas E. ;
Gokon H. ;
Koshimura S. .
Journal of Disaster Research, 2017, 12 (02) :259-271
[3]   Representation Learning: A Review and New Perspectives [J].
Bengio, Yoshua ;
Courville, Aaron ;
Vincent, Pascal .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (08) :1798-1828
[4]  
CHOLLET F, 2017, PROC CVPR IEEE, P1800, DOI [DOI 10.1109/CVPR.2017.195, 10.1109/CVPR.2017.195]
[5]   AutoAugment: Learning Augmentation Strategies from Data [J].
Cubuk, Ekin D. ;
Zoph, Barret ;
Mane, Dandelion ;
Vasudevan, Vijay ;
Le, Quoc V. .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :113-123
[6]   Spatiotemporal dynamics of urban growth in Latin American cities: An analysis using nighttime light imagery [J].
Duque, Juan C. ;
Lozano-Gracia, Nancy ;
Patino, Jorge E. ;
Restrepo, Paula ;
Velasquez, Wilson A. .
LANDSCAPE AND URBAN PLANNING, 2019, 191
[7]   Anomaly detection in earth dam and levee passive seismic data using support vector machines and automatic feature selection [J].
Fisher, Wendy D. ;
Camp, Tracy K. ;
Krzhizhanovskaya, Valeria V. .
JOURNAL OF COMPUTATIONAL SCIENCE, 2017, 20 :143-153
[8]  
Friedman J., 2001, The elements of statistical learning, DOI 10.1007/978-0-387-84858-73
[9]   Seismic risk assessment and mapping at different levels [J].
Frolova, N. I. ;
Larionov, V. I. ;
Bonnin, J. ;
Sushchev, S. P. ;
Ugarov, A. N. ;
Kozlov, M. A. .
NATURAL HAZARDS, 2017, 88 :43-62
[10]   Joint use of remote sensing data and volunteered geographic information for exposure estimation: evidence from Valparaiso, Chile [J].
Geiss, Christian ;
Schauss, Anne ;
Riedlinger, Torsten ;
Dech, Stefan ;
Zelaya, Cecilia ;
Guzman, Nicolas ;
Hube, Mathias A. ;
Arsanjani, Jamal Jokar ;
Taubenboeck, Hannes .
NATURAL HAZARDS, 2017, 86 :81-105