Multilevel Sequential Monte Carlo with Dimension-Independent Likelihood-Informed Proposals

被引:24
|
作者
Beskos, Alexandros [1 ]
Jasra, Ajay [2 ]
Law, Kody [3 ]
Marzouk, Youssef [4 ]
Zhou, Yan [2 ]
机构
[1] UCL, Dept Stat Sci, London, England
[2] NUS, Dept Stat & Appl Probabil, Singapore 117546, Singapore
[3] Univ Manchester, Sch Math, Manchester, Lancs, England
[4] MIT, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA
来源
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION | 2018年 / 6卷 / 02期
关键词
multilevel Monte Carlo; sequential Monte Carlo; Bayesian inverse problem; uncertainty quantification;
D O I
10.1137/17M1120993
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we develop a new sequential Monte Carlo method for multilevel Monte Carlo estimation. In particular, the method can be used to estimate expectations with respect to a target probability distribution over an infinite-dimensional and noncompact space-as produced, for example, by a Bayesian inverse problem with a Gaussian random field prior. Under suitable assumptions the MLSMC method has the optimal O(epsilon(-2)) bound on the cost to obtain a mean-square error of O(epsilon(2)). The algorithm is accelerated by dimension-independent likelihood-informed proposals [T. Cui, K. J. Law, and Y. M. Marzouk, (2016), J. Compd. Phys., 304, pp. 109-137] designed for Gaussian priors, leveraging a novel variation which uses empirical covariance information in lieu of Hessian information, hence eliminating the requirement for gradient evaluations. The efficiency of the algorithm is illustrated on two examples: (i) inversion of noisy pressure measurements in a PDE model of Darcy flow to recover the posterior distribution of the permeability field and (ii) inversion of noisy measurements of the solution of an SDE to recover the posterior path measure.
引用
收藏
页码:762 / 786
页数:25
相关论文
共 32 条
  • [1] Dimension-independent likelihood-informed MCMC
    Cui, Tiangang
    Law, Kody J. H.
    Marzouk, Youssef M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 304 : 109 - 137
  • [2] Multilevel dimension-independent likelihood-informed MCMC for large-scale inverse problems
    Cui, Tiangang
    Detommaso, Gianluca
    Scheichl, Robert
    INVERSE PROBLEMS, 2024, 40 (03)
  • [3] Dimension-independent Markov chain Monte Carlo on the sphere
    Lie, Han Cheng
    Rudolf, Daniel
    Sprungk, Bjoern
    Sullivan, T. J.
    SCANDINAVIAN JOURNAL OF STATISTICS, 2023, 50 (04) : 1818 - 1858
  • [4] Sequential Monte Carlo Samplers with Independent Markov Chain Monte Carlo Proposals
    South, L. F.
    Pettitt, A. N.
    Drovandi, C. C.
    BAYESIAN ANALYSIS, 2019, 14 (03): : 753 - 776
  • [5] Likelihood-informed dimension reduction for nonlinear inverse problems
    Cui, T.
    Martin, J.
    Marzouk, Y. M.
    Solonen, A.
    Spantini, A.
    INVERSE PROBLEMS, 2014, 30 (11)
  • [6] On the effective dimension and multilevel Monte Carlo
    Kahale, Nabil
    OPERATIONS RESEARCH LETTERS, 2022, 50 (04) : 415 - 421
  • [7] Data-free likelihood-informed dimension reduction of Bayesian inverse problems
    Cui, Tiangang
    Zahm, Olivier
    INVERSE PROBLEMS, 2021, 37 (04)
  • [8] Multilevel sequential Monte Carlo samplers
    Beskos, Alexandros
    Jasra, Ajay
    Law, Kody
    Tempone, Raul
    Zhou, Yan
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2017, 127 (05) : 1417 - 1440
  • [9] Markov chain Monte Carlo algorithms with sequential proposals
    Joonha Park
    Yves Atchadé
    Statistics and Computing, 2020, 30 : 1325 - 1345
  • [10] Markov chain Monte Carlo algorithms with sequential proposals
    Park, Joonha
    Atchade, Yves
    STATISTICS AND COMPUTING, 2020, 30 (05) : 1325 - 1345