Electrochemical synthesis of hydrogen peroxide from water and oxygen

被引:788
作者
Perry, Samuel C. [1 ]
Pangotra, Dhananjai [2 ,3 ]
Vieira, Luciana [2 ]
Csepei, Lenard-Istvan [2 ]
Sieber, Volker [2 ,3 ]
Wang, Ling [1 ,4 ]
de Leon, Carlos Ponce [1 ,4 ]
Walsh, Frank C. [1 ,4 ]
机构
[1] Univ Southampton, Fac Engn & Phys Sci, Electrochem Engn Lab, Southampton, Hants, England
[2] Fraunhofer Inst Interfacial Engn & Biotechnol IGB, Dept Bioelectro & Chemocatalysis BioCat, Straubing, Germany
[3] Tech Univ Munich, Campus Straubing Biotechnol & Sustainabil, Straubing, Germany
[4] Univ Southampton, Fac Engn & Phys Sci, nCATS, Southampton, Hants, England
基金
欧盟地平线“2020”;
关键词
GAS-DIFFUSION ELECTRODE; RETICULATED VITREOUS CARBON; MODIFIED GRAPHITE FELT; ADVANCED OXIDATION PROCESSES; ENHANCED H2O2 PRODUCTION; SINGLE-CRYSTAL SURFACES; ROTATING-DISK ELECTRODE; DOPED MESOPOROUS CARBON; REDUCTION REACTION; IN-SITU;
D O I
10.1038/s41570-019-0110-6
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
H2O2 is important in large-scale industrial processes and smaller on-site activities. The present industrial route to H2O2 involves hydrogenation of an anthraquinone and O-2 oxidation of the resulting dihydroanthraquinone-a costly method and one that is impractical for routine on-site use. Electrosynthesis of H2O2 is cost-effective and applicable on both large and small scales. This Review describes methods to design and assess electrode materials for H2O2 electrosynthesis. H2O2 can be prepared by oxidizing H2O at efficient anodic catalysts such as those based on BiVO4. Alternatively, H2O2 forms by partially reducing O-2 at cathodes featuring either noble metal alloys or doped carbon. In addition to the catalyst materials used, one must also consider the form and geometry of the electrodes and the type of reactor in order to strike a balance between properties such as mass transport and electroactive area, both of which substantially affect both the selectivity and rate of reaction. Research into catalyst materials and reactor designs is arguably quite mature, such that the future of H2O2 electrosynthesis will instead depend on the design of complete and efficient electrosynthesis systems, in which the complementary properties of the catalysts and the reactor lead to optimal selectivity and overall yield.
引用
收藏
页码:442 / 458
页数:17
相关论文
共 299 条
  • [1] Hydrogen Peroxide Generation in Divided-Cell Trickle Bed Electrochemical Reactor
    Abdullah, Ghassan H.
    Xing, Yangchuan
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2017, 56 (39) : 11058 - 11064
  • [2] Adanyi N., 2007, Industrial Enzymes: Structure, Function and Applications, P441
  • [3] Adzic R, 1998, FRONT ELECT, P197
  • [4] The removal of low level organics via hydrogen peroxide formed in a reticulated vitreous carbon cathode cell, Part 1. The electrosynthesis of hydrogen peroxide in aqueous acidic solutions
    Alvarez-Gallegos, A
    Pletcher, D
    [J]. ELECTROCHIMICA ACTA, 1998, 44 (05) : 853 - 861
  • [5] [Anonymous], BERICHTE DTSCH CHEMI
  • [6] Synthesis and characterization of nanostructured electrocatalysts based on nickel and tin for hydrogen peroxide electrogeneration
    Antonin, V. S.
    Assumpcao, M. H. M. T.
    Silva, J. C. M.
    Parreira, L. S.
    Lanza, M. R. V.
    Santos, M. C.
    [J]. ELECTROCHIMICA ACTA, 2013, 109 : 245 - 251
  • [7] W@Au Nanostructures Modifying Carbon as Materials for Hydrogen Peroxide Electrogeneration
    Antonin, Vanessa S.
    Parreira, Luanna S.
    Aveiro, Luci R.
    Silva, Fernando L.
    Valim, Ricardo B.
    Hammer, Peter
    Lanza, Marcos R. V.
    Santos, Mauro C.
    [J]. ELECTROCHIMICA ACTA, 2017, 231 : 713 - 720
  • [8] Low tungsten content of nanostructured material supported on carbon for the degradation of phenol
    Assumpcao, M. H. M. T.
    De Souza, R. F. B.
    Reis, R. M.
    Rocha, R. S.
    Steter, J. R.
    Hammer, P.
    Gaubeur, I.
    Calegaro, M. L.
    Lanza, M. R. V.
    Santos, M. C.
    [J]. APPLIED CATALYSIS B-ENVIRONMENTAL, 2013, 142 : 479 - 486
  • [9] Low content cerium oxide nanoparticles on carbon for hydrogen peroxide electrosynthesis
    Assumpcao, M. H. M. T.
    Moraes, A.
    De Souza, R. F. B.
    Gaubeur, I.
    Oliveira, R. T. S.
    Antonin, V. S.
    Malpass, G. R. P.
    Rocha, R. S.
    Calegaro, M. L.
    Lanza, M. R. V.
    Santos, M. C.
    [J]. APPLIED CATALYSIS A-GENERAL, 2012, 411 : 1 - 6
  • [10] Assumpçao MHMT, 2011, INT J ELECTROCHEM SC, V6, P1586