Graphene-Based Nanomaterials for Sodium-Ion Batteries

被引:175
|
作者
Lu, Yong [1 ]
Lu, Yanying [1 ]
Niu, Zhiqiang [1 ,2 ]
Chen, Jun [1 ,2 ]
机构
[1] Nankai Univ, Coll Chem, Minist Educ, Key Lab Adv Energy Mat Chem, Tianjin 300071, Peoples R China
[2] Nankai Univ, Collaborat Innovat Ctr Chem Sci & Engn, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
composites; graphene; nanomaterials; organic materials; sodium-ion batteries; HIGH-PERFORMANCE ANODE; HIGH-CAPACITY ANODE; OXYGEN REDUCTION/EVOLUTION REACTION; SUPERIOR CATHODE MATERIAL; HIGH-RATE CAPABILITY; CYCLE-STABLE ANODE; LITHIUM-ION; DOPED GRAPHENE; ELECTROCHEMICAL PERFORMANCE; ELECTRODE MATERIALS;
D O I
10.1002/aenm.201702469
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sodium-ion batteries (SIBs) are considered as promising candidates for large-scale energy storage systems due to the wide availability and low cost of raw sodium resources. However, the heavier mass and larger radius of Na+ inevitably result in lower electrochemical kinetics and larger volume expansion of active materials than that of lighter and smaller Li+. To solve these problems, rational electrode design by integrating nanomaterials with graphene is an effective approach. In this review, the authors mainly focus on recent progress of graphene-based nanomaterials for SIBs, including their design principle, preparation, characterization, and electrochemical performance. The important roles of graphene in graphene-based inorganic and organic electrode materials are discussed in depth. In such composites, graphene can effectively enhance the electrical conductivity and mitigate volume change due to the robust and highly conductive networks formed by graphene. Moreover, the nanosized materials can enhance the reaction kinetics. Future research should focus on revealing the interaction mechanism between graphene and active materials, and improving the whole energy/power density, cycling stability, and the initial Coulombic efficiency of graphene-based nanomaterials via elaborate design.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Recycling of sodium-ion batteries
    Yun Zhao
    Yuqiong Kang
    John Wozny
    Jian Lu
    Hao Du
    Chenglei Li
    Tao Li
    Feiyu Kang
    Naser Tavajohi
    Baohua Li
    Nature Reviews Materials, 2023, 8 : 623 - 634
  • [32] Sodium-Ion Batteries (a Review)
    Skundin, A. M.
    Kulova, T. L.
    Yaroslavtsev, A. B.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2018, 54 (02) : 113 - 152
  • [33] Sodium-Ion Batteries (a Review)
    A. M. Skundin
    T. L. Kulova
    A. B. Yaroslavtsev
    Russian Journal of Electrochemistry, 2018, 54 : 113 - 152
  • [34] Graphene-based flexible supercapacitors and lithium ion batteries
    Li, Na
    Chen, Zongping
    Weng, Zhe
    Wang, Dawei
    Li, Feng
    Ren, Wencai
    Cheng, Hui-Ming
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [35] Recycling of sodium-ion batteries
    Zhao, Yun
    Kang, Yuqiong
    Wozny, John
    Lu, Jian
    Du, Hao
    Li, Chenglei
    Li, Tao
    Kang, Feiyu
    Tavajohi, Naser
    Li, Baohua
    NATURE REVIEWS MATERIALS, 2023, 8 (09) : 623 - 634
  • [36] Toxicology of graphene-based nanomaterials
    Lalwani, Gaurav
    D'Agati, Michael
    Khan, Amit Mahmud
    Sitharaman, Balaji
    ADVANCED DRUG DELIVERY REVIEWS, 2016, 105 : 109 - 144
  • [37] Graphene-based nanomaterials and their electrochemistry
    Pumera, Martin
    CHEMICAL SOCIETY REVIEWS, 2010, 39 (11) : 4146 - 4157
  • [38] Graphene-based nanomaterials for bioimaging
    Lin, Jing
    Chen, Xiaoyuan
    Huang, Peng
    ADVANCED DRUG DELIVERY REVIEWS, 2016, 105 : 242 - 254
  • [39] Graphene-Based Nanomaterials for Catalysis
    Hu, Maocong
    Yao, Zhenhua
    Wang, Xianqin
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2017, 56 (13) : 3477 - 3502
  • [40] Graphene-based nanomaterials for catalysis
    Hu, Maocong
    Yao, Zhenhua
    Wang, Xianqin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254