Segmentation of Glomeruli Within Trichrome Images Using Deep Learning

被引:112
作者
Korman, Shruti [1 ]
Morgan, Laura A. [2 ]
Liang, Benjamin [2 ]
Cheung, McKenzie G. [2 ]
Lin, Christopher Q. [2 ]
Mun, Dan [3 ]
Nader, Ralph G. [4 ]
Belghasem, Mostafa E. [5 ]
Henderson, Joel M. [5 ]
Francis, Jean M. [4 ]
Chitalia, Vipul C. [4 ,5 ,6 ,7 ]
Kolachalama, Vijaya B. [1 ,6 ,8 ]
机构
[1] Boston Univ, Sch Med, Dept Med, Sect Computat Biomed, Boston, MA 02118 USA
[2] Boston Univ, Coll Engn, Boston, MA 02118 USA
[3] Boston Univ, Sargent Coll, Coll Hlth & Rehabil Sci, Boston, MA 02118 USA
[4] Boston Univ, Sch Med, Dept Med, Renal Sect, Boston, MA 02118 USA
[5] Boston Univ, Sch Med, Dept Pathol & Lab Med, Boston, MA 02118 USA
[6] Boston Univ, Sch Med, Whitaker Cardiovasc Inst, Boston, MA 02118 USA
[7] Vet Adm Boston Healthcare Syst, Boston, MA USA
[8] Boston Univ, Hariri Inst Comp & Computat Sci & Engn, Boston, MA 02218 USA
基金
美国国家卫生研究院;
关键词
computational pathology; deep learning; digital pathology; glomerulus; image segmentation; kidney biopsy; trichrome stain; PATHOLOGICAL CLASSIFICATION; GLOMERULOSCLEROSIS; FEATURES; CANCER; BIOPSY; NUMBER;
D O I
10.1016/j.ekir.2019.04.008
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Introduction: The number of glomeruli and glomerulosclerosis evaluated on kidney biopsy slides constitute standard components of a renal pathology report. Prevailing methods for glomerular assessment remain manual, labor intensive, and nonstandardized. We developed a deep learning framework to accurately identify and segment glomeruli from digitized images of human kidney biopsies. Methods: Trichrome-stained images (n = 275) from renal biopsies of 171 patients with chronic kidney disease treated at the Boston Medical Center from 2009 to 2012 were analyzed. A sliding window operation was defined to crop each original image to smaller images. Each cropped image was then evaluated by at least 3 experts into 3 categories: (i) no glomerulus, (ii) normal or partially sclerosed (NPS) glomerulus, and (iii) globally sclerosed (GS) glomerulus. This led to identification of 751 unique images representing nonglomerular regions, 611 images with NPS glomeruli, and 134 images with GS glomeruli. A convolutional neural network (CNN) was trained with cropped images as inputs and corresponding labels as output. Using this model, an image processing routine was developed to scan the test images to segment the GS glomeruli. Results: The CNN model was able to accurately discriminate nonglomerular images from NPS and GS images (performance on test data: Accuracy: 92.67% +/- 2.02% and Kappa: 0.8681 +/- 0.0392). The segmentation model that was based on the CNN multilabel classifier accurately marked the GS glomeruli on the test data (Matthews correlation coefficient = 0.628). Conclusion: This work demonstrates the power of deep learning for assessing complex histologic structures from digitized human kidney biopsies.
引用
收藏
页码:955 / 962
页数:8
相关论文
共 33 条
[1]  
[Anonymous], 2016, CoRR abs/1512.00567, DOI DOI 10.1109/CVPR.2016.308
[2]   ESTIMATING GLOMERULAR NUMBER IN-SITU USING MAGNETIC-RESONANCE-IMAGING AND BIOPSY [J].
BASGEN, JM ;
STEFFES, MW ;
STILLMAN, AE ;
MAUER, SM .
KIDNEY INTERNATIONAL, 1994, 45 (06) :1668-1672
[3]   Estimating glomerular number: Why we do it and how [J].
Bertram, John F. .
CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, 2013, 40 (11) :785-788
[4]  
Beucher S, 1994, COMP IMAG VIS, V2, P69
[5]  
BRILL G, 1956, J Mt Sinai Hosp N Y, V23, P663
[6]   Region-Based Convolutional Neural Nets for Localization of Glomeruli in Trichrome-Stained Whole Kidney Sections [J].
Bukowy, John D. ;
Dayton, Alex ;
Cloutier, Dustin ;
Manis, Anna D. ;
Staruschenko, Alexander ;
Lombard, Julian H. ;
Woods, Leah C. Solberg ;
Beard, Daniel A. ;
Cowley, Allen W., Jr. .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2018, 29 (08) :2081-2088
[7]   CLINICAL AND PATHOLOGICAL FEATURES OF FAMILIAL FOCAL SEGMENTAL GLOMERULOSCLEROSIS [J].
CONLON, PJ ;
BUTTERLY, D ;
ALBERS, F ;
RODBY, R ;
GUNNELLS, JC ;
HOWELL, DN .
AMERICAN JOURNAL OF KIDNEY DISEASES, 1995, 26 (01) :34-40
[8]   A design-based method for estimating glomerular number in the developing kidney [J].
Cullen-McEwen, Luise A. ;
Armitage, James A. ;
Nyengaard, Jens R. ;
Moritz, Karen M. ;
Bertram, John F. .
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2011, 300 (06) :F1448-F1453
[9]   Pathologic classification of focal segmental glomerulosclerosis [J].
D'Agati, V .
SEMINARS IN NEPHROLOGY, 2003, 23 (02) :117-134
[10]   Pathologic classification of focal segmental glomerulosclerosis: A working proposal [J].
D'Agati, VD ;
Fogo, AB ;
Bruijn, JA ;
Jennette, JC .
AMERICAN JOURNAL OF KIDNEY DISEASES, 2004, 43 (02) :368-382