Analysis of generalized semiparametric mixed varying-coefficients models for longitudinal data
被引:6
|
作者:
Sun, Yanqing
论文数: 0引用数: 0
h-index: 0
机构:
Univ North Carolina Charlotte, Dept Math & Stat, Charlotte, NC 28223 USAUniv North Carolina Charlotte, Dept Math & Stat, Charlotte, NC 28223 USA
Sun, Yanqing
[1
]
Qi, Li
论文数: 0引用数: 0
h-index: 0
机构:
Sanofi, Biostat & Programming, Bridgewater, NJ 08807 USAUniv North Carolina Charlotte, Dept Math & Stat, Charlotte, NC 28223 USA
Qi, Li
[2
]
Heng, Fei
论文数: 0引用数: 0
h-index: 0
机构:
Univ North Carolina Charlotte, Dept Math & Stat, Charlotte, NC 28223 USAUniv North Carolina Charlotte, Dept Math & Stat, Charlotte, NC 28223 USA
Heng, Fei
[1
]
Gilbert, Peter B.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Washington, Dept Biostat, Seattle, WA 98195 USA
Fred Hutchinson Canc Res Ctr, Stat Ctr HIV AIDS Res & Prevent, Seattle, WA 98109 USAUniv North Carolina Charlotte, Dept Math & Stat, Charlotte, NC 28223 USA
Gilbert, Peter B.
[3
,4
]
机构:
[1] Univ North Carolina Charlotte, Dept Math & Stat, Charlotte, NC 28223 USA
[2] Sanofi, Biostat & Programming, Bridgewater, NJ 08807 USA
[3] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
[4] Fred Hutchinson Canc Res Ctr, Stat Ctr HIV AIDS Res & Prevent, Seattle, WA 98109 USA
来源:
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE
|
2019年
/
47卷
/
03期
基金:
美国国家科学基金会;
关键词:
Link function;
local linear smoothing;
profile weighted least squares;
testing covariate-varying effects;
varying-coefficient effects;
REGRESSION;
D O I:
10.1002/cjs.11498
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
The generalized semiparametric mixed varying-coefficient effects model for longitudinal data can accommodate a variety of link functions and flexibly model different types of covariate effects, including time-constant, time-varying and covariate-varying effects. The time-varying effects are unspecified functions of time and the covariate-varying effects are nonparametric functions of a possibly time-dependent exposure variable. A semiparametric estimation procedure is developed that uses local linear smoothing and profile weighted least squares, which requires smoothing in the two different and yet connected domains of time and the time-dependent exposure variable. The asymptotic properties of the estimators of both nonparametric and parametric effects are investigated. In addition, hypothesis testing procedures are developed to examine the covariate effects. The finite-sample properties of the proposed estimators and testing procedures are examined through simulations, indicating satisfactory performances. The proposed methods are applied to analyze the AIDS Clinical Trial Group 244 clinical trial to investigate the effects of antiretroviral treatment switching in HIV-infected patients before and after developing the T215Y antiretroviral drug resistance mutation. The Canadian Journal of Statistics 47: 352-373; 2019 (c) 2019 Statistical Society of Canada
机构:
Univ N Carolina, Dept Math & Stat, Charlotte, NC 28223 USASanofi, Biostat & Programming, Bridgewater, NJ 08807 USA
Sun, Yanqing
Gilbert, Peter B.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Washington, Dept Biostat, Seattle, WA 98195 USA
Fred Hutchinson Canc Res Ctr, Seattle, WA 98109 USASanofi, Biostat & Programming, Bridgewater, NJ 08807 USA
机构:
Capital Univ Econ & Business, Sch Stat, Beijing 10007D, Peoples R China
Yancheng Teachers Univ, Sch Math & Stat, Yancheng, Peoples R ChinaCapital Univ Econ & Business, Sch Stat, Beijing 10007D, Peoples R China
Sun, Huihui
Liu, Qiang
论文数: 0引用数: 0
h-index: 0
机构:
Capital Univ Econ & Business, Sch Stat, Beijing 10007D, Peoples R ChinaCapital Univ Econ & Business, Sch Stat, Beijing 10007D, Peoples R China