A FINITENESS THEOREM FOR DUAL GRAPHS OF SURFACE SINGULARITIES

被引:3
作者
Popescu-Pampu, Patrick [1 ]
Seade, Jose [2 ]
机构
[1] Univ Paris 07, CNRS, UMR 7586, Equipe Geometrie & Dynam,Inst Math, F-75205 Paris 13, France
[2] Univ Nacl Autonoma Mexico, Unidad Cuernavaca, Inst Matemat, Cuernavaca 62191, Morelos, Mexico
关键词
Gorenstein surface singularities; numerically Gorenstein; canonical cycle; dual graphs;
D O I
10.1142/S0129167X09005649
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider a fixed connected, finite graph G and equip its vertices with weights pi which are non-negative integers. We show that there is a finite number of possibilities for the coefficients of the canonical cycle of a numerically Gorenstein surface singularity having Gamma as the dual graph of the minimal resolution, the weights p(i) of the vertices being the arithmetic genera of the corresponding irreducible components. As a consequence we get that if G is not a cycle, then there is a finite number of possibilities of self-intersection numbers which one can attach to the vertices which are of valency >= 2, such that one gets the dual graph of the minimal resolution of a numerically Gorenstein surface singularity. Moreover, we describe precisely the situations when there exists an infinite number of possibilities for the self-intersections of the component corresponding to some fixed vertex of Gamma.
引用
收藏
页码:1057 / 1068
页数:12
相关论文
共 18 条
[1]  
[Anonymous], 1984, Isolated Singular Points on Complete Intersections
[2]   ON ISOLATED RATIONAL SINGULARITIES OF SURFACES [J].
ARTIN, M .
AMERICAN JOURNAL OF MATHEMATICS, 1966, 88 (01) :129-&
[3]  
Barth W. P., 2004, COMPACT COMPLEX SURF, V4
[4]  
Brieskorn E., 2000, SURVEYS DIFFERENTIAL, V7, P17
[5]  
Dolgachev I.V., 1974, FUNCTIONAL ANAL APPL, V8, p[75, 160]
[6]   ON THE LINK SPACE OF A GORENSTEIN QUASIHOMOGENEOUS SURFACE SINGULARITY [J].
DOLGACHEV, IV .
MATHEMATISCHE ANNALEN, 1983, 265 (04) :529-540
[7]  
DURFEE A. H., 1979, Enseign. Math., V25, P131
[8]   SIGNATURE OF SMOOTHINGS OF COMPLEX SURFACE SINGULARITIES [J].
DURFEE, AH .
MATHEMATISCHE ANNALEN, 1978, 232 (01) :85-98
[9]   UBER MODIFIKATIONEN UND EXZEPTIONELLE ANALYTISCHE MENGEN [J].
GRAUERT, H .
MATHEMATISCHE ANNALEN, 1962, 146 (04) :331-368
[10]  
JIA L, 2007, AMS IP STUD ADV MATH, V39, P109