Optimization as a function of the phase-lag order of nonlinear explicit two-step P-stable method for linear periodic IVPs

被引:151
|
作者
Stavroyiannis, S. [1 ]
Simos, T. E. [2 ]
机构
[1] Technol Educ Inst Kalamata, Sch Management & Econ, Dept Finance & Auditing, Antikalamos 24100, Greece
[2] Univ Peloponnese, Fac Sci & Technol, Dept Comp Sci & Technol, Tripoli 22100, Libya
关键词
Second-order linear initial value problem; P-stability; Phase-lag order; Vector product and quotient; INITIAL-VALUE-PROBLEMS; ONE-STEP METHOD; DIFFERENTIAL-EQUATIONS; NUMERICAL-INTEGRATION; Y''=F(T; Y); SYSTEMS;
D O I
10.1016/j.apnum.2009.05.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We elaborate on a nonlinear explicit two-step P-stable method of fourth algebraic order and varying phase-lag order for solving one-dimensional second-order linear periodic initial value problems (IVPs) of ordinary differential equations. Using special vector arithmetic with respect to an analytic function, the method can be extended to be vector applicable for multidimensional problems. Numerical results to illustrate the efficiency of the method are presented. (C) 2009 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:2467 / 2474
页数:8
相关论文
共 50 条
  • [21] High phase-lag order trigonometrically fitted two-step Obrechkoff methods for the numerical solution of periodic initial value problems
    Shokri, Ali
    Saadat, Hosein
    NUMERICAL ALGORITHMS, 2015, 68 (02) : 337 - 354
  • [22] A singularly P-stable two-step method with improved characteristics for problems in chemistry
    Medvedeva, Marina A.
    Simos, T. E.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2022, 60 (01) : 70 - 91
  • [23] A phase-fitting singularly P-stable economical two-step method for problems in quantum chemistry
    Maxim A. Medvedev
    T. E. Simos
    Journal of Mathematical Chemistry, 2022, 60 : 1 - 48
  • [24] A two-step singularly P-stable method with high phase and large stability properties for problems in chemistry
    Generalov, Dmitry
    Tsvetova, Ekaterina
    Fedorov, Ruslan
    Kovalnogov, Vladislav
    Simos, T. E.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2022, 60 (03) : 475 - 501
  • [25] High phase-lag order trigonometrically fitted two-step Obrechkoff methods for the numerical solution of periodic initial value problems
    Ali Shokri
    Hosein Saadat
    Numerical Algorithms, 2015, 68 : 337 - 354
  • [26] Low-order, P-stable, two-step methods for use with lax accuracies
    Medvedev, Maxim A.
    Simos, Theodore E.
    Tsitouras, Charalampos
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (18) : 6301 - 6314
  • [27] A two-step singularly P-stable method with high phase and large stability properties for problems in chemistry
    Dmitry Generalov
    Ekaterina Tsvetova
    Ruslan Fedorov
    Vladislav Kovalnogov
    T. E. Simos
    Journal of Mathematical Chemistry, 2022, 60 : 475 - 501
  • [28] A phase-fitting singularly P-stable economical two-step method for problems in quantum chemistry
    Medvedev, Maxim A.
    Simos, T. E.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2022, 60 (01) : 1 - 48
  • [29] Explicit One-Step P-Stable Methods for Second Order Periodic Initial Value Problems
    Qinghong Li and Yongzhong Song School of Mathematics and Computer Science
    NumericalMathematicsAJournalofChineseUniversities(EnglishSeries), 2006, (03) : 237 - 247
  • [30] A TWO-STEP EXPLICIT METHOD FOR A CLASS OF LINEAR PERIODIC INITIAL VALUE PROBLEMS
    李庆宏
    罗亮生
    吴新元
    NumericalMathematicsAJournalofChineseUniversities(EnglishSeries), 2003, (01) : 83 - 90