Degree of Approximation for Bivariate Generalized Bernstein Type Operators

被引:39
|
作者
Acar, Tuncer [2 ]
Kajla, Arun [1 ]
机构
[1] Cent Univ Haryana, Dept Math, Pali 123031, Haryana, India
[2] Selcuk Univ, Dept Math, Fac Sci, TR-42003 Selcuklu Konya, Turkey
关键词
GBS operators; B-continuous function; B-differentiable function; mixed modulus of smoothness; K-FUNCTIONALS; GBS OPERATORS; SMOOTHNESS;
D O I
10.1007/s00025-018-0838-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study an extension of the bivariate generalized Bernstein operators based on a non-negative real parameters. For these operators we obtain the order of approximation using Peetre's K-functional, a Voronovskaja type theorem and the degree of approximation by means of the Lipschitz class. Further, we consider the Generalized Boolean Sum operators of generalized Bernstein type and we study the degree of approximation in terms of the mixed modulus of continuity. Finally, we show the comparisons by some illustrative graphics in Maple for the convergence of the operators to certain functions.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Approximation by Associated GBS Operators of Szasz-Mirakjan Type Operators
    Yadav, Rishikesh
    Meher, Ramakanta
    Mishra, Vishnu Narayan
    FILOMAT, 2021, 35 (14) : 4789 - 4809
  • [42] Bivariate Lupas-Durrmeyer type operators involving Polya distribution
    Yadav, Jyoti
    Mohiuddine, S. A.
    Kajla, Arun
    Alotaibi, Abdullah
    FILOMAT, 2023, 37 (21) : 7041 - 7056
  • [43] Linking of Bernstein-Chlodowsky and Szasz-Appell-Kantorovich type operators
    Agrawal, P. N.
    Kumar, Dharmendra
    Araci, Serkan
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (06): : 3288 - 3302
  • [44] APPROXIMATION OF BOGEL CONTINUOUS FUNCTIONS AND DEFERRED WEIGHTED A-STATISTICAL CONVERGENCE BY BERNSTEIN-KANTOROVICH TYPE OPERATORS ON A TRIANGLE
    Agrawal, P. N.
    Acu, Ana-Maria
    Chauhan, Ruchi
    Garg, Tarul
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (04): : 1695 - 1711
  • [45] q-GENERALIZED BERNSTEIN-DURRMEYER POLYNOMIALS
    Agrawal, P. N.
    Acu, A. M.
    Ruchi, R.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (01): : 211 - 235
  • [46] Quantitative Estimates of Generalized Boolean Sum Operators of Blending Type
    Agrawal, P. N.
    Ispir, Nurhayat
    Sidharth, Manjari
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2018, 39 (03) : 295 - 307
  • [47] Modified ρ-Bernstein Operators for Functions of Two Variables
    Agrawal, P. N.
    Kajla, Arun
    Kumar, Dharmendra
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2021, 42 (09) : 1073 - 1095
  • [48] A new kind of Bernstein-Schurer-Stancu-Kantorovich-type operators based on q-integers
    Chauhan, Ruchi
    Ispir, Nurhayat
    Agrawal, P. N.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [49] A new kind of Bernstein-Schurer-Stancu-Kantorovich-type operators based on q-integers
    Ruchi Chauhan
    Nurhayat Ispir
    PN Agrawal
    Journal of Inequalities and Applications, 2017