Degree of Approximation for Bivariate Generalized Bernstein Type Operators

被引:39
|
作者
Acar, Tuncer [2 ]
Kajla, Arun [1 ]
机构
[1] Cent Univ Haryana, Dept Math, Pali 123031, Haryana, India
[2] Selcuk Univ, Dept Math, Fac Sci, TR-42003 Selcuklu Konya, Turkey
关键词
GBS operators; B-continuous function; B-differentiable function; mixed modulus of smoothness; K-FUNCTIONALS; GBS OPERATORS; SMOOTHNESS;
D O I
10.1007/s00025-018-0838-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study an extension of the bivariate generalized Bernstein operators based on a non-negative real parameters. For these operators we obtain the order of approximation using Peetre's K-functional, a Voronovskaja type theorem and the degree of approximation by means of the Lipschitz class. Further, we consider the Generalized Boolean Sum operators of generalized Bernstein type and we study the degree of approximation in terms of the mixed modulus of continuity. Finally, we show the comparisons by some illustrative graphics in Maple for the convergence of the operators to certain functions.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] APPROXIMATION PROPERTIES OF MODIFIED q-BERNSTEIN-KANTOROVICH OPERATORS
    Acu, Ana Maria
    Agrawal, P. N.
    Kumar, Dharmendra
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (02): : 2170 - 2197
  • [32] Inverse approximation and GBS of bivariate Kantorovich type sampling series
    A. Sathish Kumar
    Bajpeyi Shivam
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [33] Blending type approximation by q-generalized Boolean sum of Durrmeyer type
    Sidharth, Manjari
    Ispir, Nurhayat
    Agrawal, P. N.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (11) : 3901 - 3911
  • [34] ON THE APPROXIMATION BY ASSOCIATED GBS OPERATORS OF EXPONENTIAL TYPE
    Pop, Ovidiu T.
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2007, 52 (01): : 99 - 110
  • [35] On Simultaneous Approximation by Iterated Boolean Sums of Bernstein Operators
    Draganov, Borislav R.
    RESULTS IN MATHEMATICS, 2014, 66 (1-2) : 21 - 41
  • [36] ABOUT THE BIVARIATE OPERATORS OF KANTOROVICH TYPE
    Pop, O. T.
    Farcas, M. D.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2009, 78 (01): : 43 - 52
  • [37] Kantorovich variant of a new kind of q-Bernstein-Schurer operators
    Ruchi, Ruchi
    Ispir, Nurhayat
    Agrawal, P. N.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (16) : 5687 - 5706
  • [38] Pointwise estimates for Bernstein-type operators
    Guo, S
    Oi, Q
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 1999, 35 (1-2) : 237 - 246
  • [39] ABOUT THE BIVARIATE OPERATORS OF DURRMEYER-TYPE
    Pop, Ovidiu T.
    Farcas, Mircea D.
    DEMONSTRATIO MATHEMATICA, 2009, 42 (01) : 97 - 107
  • [40] RATE OF CONVERGENCE OF q - ANALOGUE OF A CLASS OF NEW BERNSTEIN TYPE OPERATORS
    Deshwal, Sheetal
    Acu, Ana Maria
    Agrawal, P. N.
    MISKOLC MATHEMATICAL NOTES, 2018, 19 (01) : 211 - 234