Degree of Approximation for Bivariate Generalized Bernstein Type Operators

被引:41
作者
Acar, Tuncer [2 ]
Kajla, Arun [1 ]
机构
[1] Cent Univ Haryana, Dept Math, Pali 123031, Haryana, India
[2] Selcuk Univ, Dept Math, Fac Sci, TR-42003 Selcuklu Konya, Turkey
关键词
GBS operators; B-continuous function; B-differentiable function; mixed modulus of smoothness; K-FUNCTIONALS; GBS OPERATORS; SMOOTHNESS;
D O I
10.1007/s00025-018-0838-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study an extension of the bivariate generalized Bernstein operators based on a non-negative real parameters. For these operators we obtain the order of approximation using Peetre's K-functional, a Voronovskaja type theorem and the degree of approximation by means of the Lipschitz class. Further, we consider the Generalized Boolean Sum operators of generalized Bernstein type and we study the degree of approximation in terms of the mixed modulus of continuity. Finally, we show the comparisons by some illustrative graphics in Maple for the convergence of the operators to certain functions.
引用
收藏
页数:20
相关论文
共 31 条
[1]   Approximation by Bivariate (p, q)-Bernstein-Kantorovich Operators [J].
Acar, Tuncer ;
Aral, Ali ;
Mohiuddine, S. A. .
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A2) :655-662
[2]   Approximation by (p, q)-Baskakov-Durrmeyer-Stancu Operators [J].
Acar, Tuncer ;
Mohiuddine, S. A. ;
Mursaleen, Mohammad .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2018, 12 (06) :1453-1468
[3]   APPROXIMATION PROPERTIES OF TWO DIMENSIONAL BERNSTEIN-STANCU-CHLODOWSKY OPERATORS [J].
Acar, Tuncer ;
Aral, Ali .
MATEMATICHE, 2013, 68 (02) :15-31
[4]  
Acar T, 2016, J INEQUAL APPL, DOI 10.1186/s13660-016-1045-9
[5]   Some approximation properties of a Durrmeyer variant of q-Bernstein-Schurer operators [J].
Acu, Ana-Maria ;
Muraru, Carmen Violeta ;
Sofonea, Daniel Florin ;
Radu, Voichita Adriana .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (18) :5636-5650
[6]   Approximation properties of Lupas–Kantorovich operators based on Polya distribution [J].
Agrawal P.N. ;
Ispir N. ;
Kajla A. .
Rendiconti del Circolo Matematico di Palermo Series 2, 2016, 65 (2) :185-208
[7]   GBS Operators of LupaAY-Durrmeyer Type Based on Polya Distribution [J].
Agrawal, P. N. ;
Ispir, Nurhayat ;
Kajla, Arun .
RESULTS IN MATHEMATICS, 2016, 69 (3-4) :397-418
[8]   Degree of Approximation for Bivariate Chlodowsky-Szasz-Charlier Type Operators [J].
Agrawal, Purshottam N. ;
Ispir, Nurhayat .
RESULTS IN MATHEMATICS, 2016, 69 (3-4) :369-385
[9]  
[Anonymous], 1988, Approx Theory Its Appl
[10]  
[Anonymous], 2013, SCI STUD RES SER MAT