Local Rheology Relation with Variable Yield Stress Ratio across Dry, Wet, Dense, and Dilute Granular Flows

被引:40
作者
Pahtz, Thomas [1 ,2 ]
Duran, Orencio [3 ]
de Klerk, David N. [4 ,5 ]
Govender, Indresan [6 ]
Trulsson, Martin [7 ]
机构
[1] Zhejiang Univ, Ocean Coll, Inst Port Coastal & Offshore Engn, Hangzhou 310058, Zhejiang, Peoples R China
[2] Second Inst Oceanog, State Key Lab Satellite Ocean Environm Dynam, Hangzhou 310012, Zhejiang, Peoples R China
[3] Texas A&M Univ, Dept Ocean Engn, College Stn, TX 77843 USA
[4] Univ Cape Town, Ctr Minerals Res, ZA-7701 Rondebosch, South Africa
[5] Univ Cape Town, Dept Phys, ZA-7701 Rondebosch, South Africa
[6] Univ KwaZulu Natal, Sch Engn, ZA-4041 Glenwood, South Africa
[7] Lund Univ, Dept Chem, Theoret Chem, POB 124, SE-22100 Lund, Sweden
基金
中国国家自然科学基金; 瑞典研究理事会;
关键词
KINETIC-THEORY; TRANSPORT; REDUCTION; FRICTION; CONTACT; LAW;
D O I
10.1103/PhysRevLett.123.048001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Dry, wet, dense, and dilute granular flows have been previously considered fundamentally different and thus described by distinct, and in many cases incompatible, theologies. We carry out extensive simulations of granular flows, including wet and dry conditions, various geometries and driving mechanisms (boundary driven, fluid driven, and gravity driven), many of which are not captured by standard theology models. For all simulated conditions, except for fluid-driven and gravity-driven flows close to the flow threshold, we find that the Mohr-Coulomb friction coefficient mu scales with the square root of the local Peclet number Pe provided that the particle diameter exceeds the particle mean free path. With decreasing Pe and granular temperature gradient M, this general scaling breaks down, leading to a yield condition with a variable yield stress ratio characterized by M.
引用
收藏
页数:6
相关论文
共 60 条
[11]   Unifying Suspension and Granular Rheology [J].
Boyer, Francois ;
Guazzelli, Elisabeth ;
Pouliquen, Olivier .
PHYSICAL REVIEW LETTERS, 2011, 107 (18)
[12]   New patterns in high-speed granular flows [J].
Brodu, Nicolas ;
Delannay, Renaud ;
Valance, Alexandre ;
Richard, Patrick .
JOURNAL OF FLUID MECHANICS, 2015, 769 :218-228
[13]   Shallow granular flows down flat frictional channels: Steady flows and longitudinal vortices [J].
Brodu, Nicolas ;
Richard, Patrick ;
Delannay, Renaud .
PHYSICAL REVIEW E, 2013, 87 (02)
[14]   Submarine granular flows down inclined planes [J].
Cassar, C ;
Nicolas, M ;
Pouliquen, O .
PHYSICS OF FLUIDS, 2005, 17 (10)
[15]   Non-Newtonian hydrodynamics for a dilute granular suspension under uniform shear flow [J].
Chamorro, Moises G. ;
Reyes, Francisco Vega ;
Garzo, Vicente .
PHYSICAL REVIEW E, 2015, 92 (05)
[16]   A modified kinetic theory for frictional granular flows in dense and dilute regimes [J].
Chialvo, Sebastian ;
Sundaresan, Sankaran .
PHYSICS OF FLUIDS, 2013, 25 (07)
[17]   Critical scaling near the yielding transition in granular media [J].
Clark, Abram H. ;
Thompson, Jacob D. ;
Shattuck, Mark D. ;
Ouellette, Nicholas T. ;
O'Hern, Corey S. .
PHYSICAL REVIEW E, 2018, 97 (06)
[18]   Relevance of visco-plastic theory in a multi-directional inhomogeneous granular flow [J].
Cortet, P. -P. ;
Bonamy, D. ;
Daviaud, F. ;
Dauchot, O. ;
Dubrulle, B. ;
Renouf, M. .
EPL, 2009, 88 (01)
[19]   Friction law and hysteresis in granular materials [J].
DeGiuli, E. ;
Wyart, M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (35) :9284-9289
[20]   Unified theory of inertial granular flows and non-Brownian suspensions [J].
DeGiuli, E. ;
Duering, G. ;
Lerner, E. ;
Wyart, M. .
PHYSICAL REVIEW E, 2015, 91 (06)