RIGIDITY OF IMMERSED SUBMANIFOLDS IN A HYPERBOLIC SPACE

被引:0
作者
Nguyen Thac Dung [1 ]
机构
[1] Hanoi Univ Sci HUS VNU, Dept Math Mech & Informat, 334 Nguyen Trai Rd, Hanoi, Vietnam
关键词
immersed hypersurface; harmonic forms; the first eigenvalue; delta-stablity; stable hypersurface; STABLE MINIMAL HYPERSURFACES; L-2; HARMONIC; 1-FORMS; COMPLETE MANIFOLDS; CURVATURE; THEOREMS; RN+1;
D O I
10.4134/BKMS.b150986
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M-n, 2 <= n <= 6 be a complete noncompact hypersurface immersed in Hn+1. We show that there exist two certain positive constants 0 < delta <= 1, and beta depending only on delta and the first eigenvalue lambda(1) (M) of Laplacian such that if M satisfies a (delta-SC) condition and lambda(1)(M) has a lower bound then H-1(L-2(M)) = 0. Excepting these two conditions, there is no more additional condition on the curvature.
引用
收藏
页码:1795 / 1804
页数:10
相关论文
共 14 条
[1]  
[Anonymous], ARXIV07043194V1
[2]  
Cao HD, 1997, MATH RES LETT, V4, P637
[3]   An exact sequence in L2-cohomology [J].
Carron, G .
DUKE MATHEMATICAL JOURNAL, 1998, 95 (02) :343-372
[4]   Eigenvalue estimates for submanifolds with bounded mean curvature in the hyperbolic space [J].
Cheung, LF ;
Leung, PF .
MATHEMATISCHE ZEITSCHRIFT, 2001, 236 (03) :525-530
[5]   Vanishing theorems for L2 harmonic 1-forms on complete submanifolds in a Riemannian manifold [J].
Dung, Nguyen Thac ;
Seo, Keomkyo .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 423 (02) :1594-1609
[6]   VANISHING THEOREMS ON COMPLETE MANIFOLDS WITH WEIGHTED POINCARE INEQUALITY AND APPLICATIONS [J].
Fu, Hai-Ping ;
Yang, Deng-Yun .
NAGOYA MATHEMATICAL JOURNAL, 2012, 206 :25-37
[7]   L2 HARMONIC 1-FORMS ON COMPLETE SUBMANIFOLDS IN EUCLIDEAN SPACE [J].
Fu, Hai-Ping ;
Li, Zhen-Qi .
KODAI MATHEMATICAL JOURNAL, 2009, 32 (03) :432-441
[8]   SOBOLEV AND ISOPERIMETRIC INEQUALITIES FOR RIEMANNIAN SUBMANIFOLDS [J].
HOFFMAN, D ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1974, 27 (06) :715-727
[9]   On the structure of complete hypersurfaces in a Riemannian manifold of nonnegative curvature and L 2 harmonic forms [J].
Kim, Jeong-Jin ;
Yun, Gabjin .
ARCHIV DER MATHEMATIK, 2013, 100 (04) :369-380