Exponential growth of codimensions of identities of algebras with unity

被引:1
作者
Zaicev, M. V. [1 ]
Repovs, D. [2 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Mech & Math, Moscow, Russia
[2] Univ Ljubljana, Ljubljana 61000, Slovenia
基金
俄罗斯基础研究基金会;
关键词
identities; codimensions; exponential growth; POLYNOMIAL-IDENTITIES; ASYMPTOTIC-BEHAVIOR; POISSON ALGEBRAS; LIE-ALGEBRAS;
D O I
10.1070/SM2015v206n10ABEH004501
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The asymptotic behaviour is studied of exponentially bounded sequences of codimensions of identities of algebras with unity. A series of algebras is constructed for which the base of the exponential increases by exactly 1 when an outer unity is adjoined to the original algebra. It is shown that the PI-exponents of unital algebras can take any value greater than 2, and the exponents of finite-dimensional unital algebras form a dense subset in the domain [2, infinity).
引用
收藏
页码:1440 / 1462
页数:23
相关论文
共 34 条
[1]  
[Anonymous], 2002, ENCY MATH APPL
[2]   Graded polynomial identities of matrices [J].
Bahturin, Y ;
Drensky, V .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 357 :15-34
[3]  
Bahturin Yu. A., 1985, IDENTICAL RELATIONS
[4]   Asymptotic behaviour of codimensions of p. i. algebras satisfying Capelli identities [J].
Berele, Allan ;
Regev, Amitai .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (10) :5155-5172
[5]   Properties of hook Schur functions with applications to p. i. algebras [J].
Berele, Allan .
ADVANCES IN APPLIED MATHEMATICS, 2008, 41 (01) :52-75
[6]  
[Безущак О.Е. Bezushchak O.E.], 2013, [Фундаментальная и прикладная математика, Fundamental'naya i prikladnaya matematika], V18, P11
[7]   Exact asymptotic behaviour of the codimensions of some PI algebras [J].
Drensky, V ;
Regev, A .
ISRAEL JOURNAL OF MATHEMATICS, 1996, 96 :231-242
[8]  
Drensky V., 1992, Contemporary Mathematics, V131, P285
[9]  
Drensky V., 2000, MATH SURVEYS MONOGR
[10]   Codimensions of algebras and growth functions [J].
Giambruno, A. ;
Mishchenko, S. ;
Zaicev, M. .
ADVANCES IN MATHEMATICS, 2008, 217 (03) :1027-1052