DICTIONARY LEARNING FOR THE SPARSE MODELLING OF ATRIAL FIBRILLATION IN ECG SIGNALS

被引:12
作者
Mailhe, B. [1 ]
Gribonval, R. [1 ]
Bimbot, F. [1 ]
Lemay, M. [2 ]
Vandergheynst, P. [2 ]
Vesin, J. -M. [2 ]
机构
[1] IRISA, INRIA, Projet METISS, Campus Beaulieu, F-35042 Rennes, France
[2] Ecole Polytech Fed Lausanne, Signal Proc Lab Sch Engn, CH-1015 Lausanne, Switzerland
来源
2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS | 2009年
关键词
ECG; atrial fibrillation; monochannel source separation; dictionary learning; sparse approximation; K-SVD;
D O I
10.1109/ICASSP.2009.4959621
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We propose a new method for ventricular cancellation and atrial modelling in the ECG of patients suffering from atrial fibrillation. Our method is based on dictionary learning. It extends both the average beat subtraction and the sparse source separation approaches. Experiments on synthetic data show that this method can almost completely suppress the ventricular activity, but it generates some artifacts. Contrary to other ventricular cancellations methods, our approach also learns a model for the atrial activity.
引用
收藏
页码:465 / +
页数:2
相关论文
共 50 条
  • [41] A Dictionary Optimization Method for Reconstruction of ECG Signals after Compressed Sensing
    De Vito, Luca
    Picariello, Enrico
    Picariello, Francesco
    Rapuano, Sergio
    Tudosa, Ioan
    SENSORS, 2021, 21 (16)
  • [42] Hybrid approach for ECG signal enhancement using dictionary learning-based sparse representation
    Rakshit, Manas
    Das, Susmita
    IET SCIENCE MEASUREMENT & TECHNOLOGY, 2019, 13 (03) : 381 - 391
  • [43] CROSS-DOMAIN JOINT DICTIONARY LEARNING FOR ECG RECONSTRUCTION FROM PPG
    Tian, Xin
    Zhu, Qiang
    Li, Yuenan
    Wu, Min
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 936 - 940
  • [44] Fetal ECG extraction exploiting joint sparse supports in a dual dictionary framework
    Sana, Furrukh
    Ballal, Tang
    Shadaydeh, Maha
    Hoteit, Ibrahim
    Al-Naffouri, Tareq Y.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2019, 48 : 46 - 60
  • [45] Build a bridge between ECG and EEG signals for atrial fibrillation diagnosis using AI methods
    Li, Moqing
    Zeng, Xinhua
    Wu, Feng
    Chu, Yang
    Wei, Weiguo
    Fan, Min
    Pang, Chengxin
    Hu, Xing
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 166
  • [46] A Decision-Making System with Reject Option for Atrial Fibrillation Prediction Without ECG Signals
    Mroueh, M.
    Alshamaa, D.
    Mourad-Chehade, F.
    Abdallah, F.
    IRBM, 2022, 43 (06) : 573 - 584
  • [47] Automatic Detection of Atrial Fibrillation Based on Handheld ECG Device
    Tseng, Chun-Wei
    Lin, Geng-Hong
    Chang, Chung-Hung
    Chan, Hau-Yu
    Tsai, Cheng-Lun
    Lin, Yue-Der
    Lin, Kang-Ping
    5TH EUROPEAN CONFERENCE OF THE INTERNATIONAL FEDERATION FOR MEDICAL AND BIOLOGICAL ENGINEERING, PTS 1 AND 2, 2012, 37 : 506 - +
  • [48] Predicting atrial fibrillation termination using ECG features, a comparison
    Saberi, S.
    Esmaeili, V.
    Towhidkhah, F.
    Moradi, M. H.
    ISABEL: 2008 FIRST INTERNATIONAL SYMPOSIUM ON APPLIED SCIENCES IN BIOMEDICAL AND COMMMUNICATION TECHNOLOGIES, 2008, : 267 - +
  • [49] Efficient transformation of ECG signals from 1-D to 2-D for atrial fibrillation detection using deep learning
    Jiahui Gao
    Yongjian Li
    Meng Chen
    Xiuxin Zhang
    Yiheng Sun
    Xinge Jiang
    Shoushui Wei
    Signal, Image and Video Processing, 2025, 19 (9)
  • [50] Sparse Bayesian dictionary learning with a Gaussian hierarchical model
    Yang, Linxiao
    Fang, Jun
    Cheng, Hong
    Li, Hongbin
    SIGNAL PROCESSING, 2017, 130 : 93 - 104