Clustering with K-Harmonic Means Applied to Colour Image Quantization

被引:6
作者
Frackiewicz, Mariusz [1 ]
Palus, Henryk [1 ]
机构
[1] Silesian Tech Univ, Inst Automat Control, PL-44100 Gliwice, Poland
来源
ISSPIT: 8TH IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY | 2008年
关键词
colour image quantization; clustering; k-means; k-harmonic means; quality measures;
D O I
10.1109/ISSPIT.2008.4775684
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The main goal of colour quantization methods is a colour reduction with minimum colour error. In this paper were investigated six following colour quantization techniques: the classical median cut, improved median cut, clustering k-means technique in two colour versions (RGB, CIELAB) and also two versions of relative novel technique named k-harmonic means. The comparison presented here was based on testing of ten natural colour images for quantization into 16, 64 and 256 colours. In evaluation process two criteria were used: the mean squared quantization error (MSE) and the average error in the CIELAB colour space (Delta E). During tests the efficiency of k-harmonic means applied to colour quantization has been proved.
引用
收藏
页码:52 / 57
页数:6
相关论文
共 50 条
  • [21] A K-harmonic means Clustering Algorithm Based on Enhanced Differential Evolution
    Zhang, LiDong
    Mao, Li
    Gong, HuaiJin
    Yang, Hong
    2013 FIFTH INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION (ICMTMA 2013), 2013, : 13 - 16
  • [22] A clustering approach using a combination of gravitational search algorithm and k-harmonic means and its application in text document clustering
    Mirhosseini, Mina
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2017, 25 (02) : 1251 - 1262
  • [23] A Novel K-harmonic Means Clustering Based on Enhanced Firefly Algorithm
    Zhou, Zhiping
    Zhu, Shuwei
    Zhang, Daowen
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING: BIG DATA AND MACHINE LEARNING TECHNIQUES, ISCIDE 2015, PT II, 2015, 9243 : 140 - 149
  • [24] A Hybrid Clustering Algorithm Based on Dimensional Reduction and K-Harmonic Means
    Guo, Chonghui
    Peng, Li
    2008 4TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING, VOLS 1-31, 2008, : 11368 - +
  • [25] Data clustering based on hybrid K-harmonic means and modifier imperialist competitive algorithm
    Abdeyazdan, Marjan
    JOURNAL OF SUPERCOMPUTING, 2014, 68 (02) : 574 - 598
  • [26] Spectral co-clustering documents and words using fuzzy K-harmonic means
    Liu, Na
    Chen, Fei
    Lu, Mingyu
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2013, 4 (01) : 75 - 83
  • [27] Data clustering based on hybrid K-harmonic means and modifier imperialist competitive algorithm
    Marjan Abdeyazdan
    The Journal of Supercomputing, 2014, 68 : 574 - 598
  • [28] Spectral co-clustering documents and words using fuzzy K-harmonic means
    Na Liu
    Fei Chen
    Mingyu Lu
    International Journal of Machine Learning and Cybernetics, 2013, 4 : 75 - 83
  • [29] Utilization of Adaptive K-Harmonic Means Clustering and Trust Establishment in VANETs
    Jini, K. M.
    Senthilkumar, J.
    Suresh, Y.
    Mohanraj, V
    PROCEEDINGS OF SECOND INTERNATIONAL CONFERENCE ON SUSTAINABLE EXPERT SYSTEMS (ICSES 2021), 2022, 351 : 447 - 457
  • [30] An efficient hybrid data clustering method based on K-harmonic means and Particle Swarm Optimization
    Yang, Fengqin
    Sun, Tieli
    Zhang, Changhai
    EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (06) : 9847 - 9852