Dense Prediction Transformer for Scale Estimation in Monocular Visual Odometry

被引:3
|
作者
Francani, Andre O. [1 ]
Maximo, Marcos R. O. A. [1 ]
机构
[1] Aeronaut Inst Technol, Autonomous Computat Syst Lab Lab SCA, Comp Sci Div, Sao Jose Dos Campos, SP, Brazil
来源
2022 LATIN AMERICAN ROBOTICS SYMPOSIUM (LARS), 2022 BRAZILIAN SYMPOSIUM ON ROBOTICS (SBR), AND 2022 WORKSHOP ON ROBOTICS IN EDUCATION (WRE) | 2022年
关键词
monocular visual odometry; scale estimation; deep learning; monocular depth estimation; vision transformer;
D O I
10.1109/LARS/SBR/WRE56824.2022.9995735
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Monocular visual odometry consists of the estimation of the position of an agent through images of a single camera, and it is applied in autonomous vehicles, medical robots, and augmented reality. However, monocular systems suffer from the scale ambiguity problem due to the lack of depth information in 2D frames. This paper contributes by showing an application of the dense prediction transformer model for scale estimation in monocular visual odometry systems. Experimental results show that the scale drift problem of monocular systems can be reduced through the accurate estimation of the depth map by this model, achieving competitive state-of-the-art performance on a visual odometry benchmark.
引用
收藏
页码:312 / 317
页数:6
相关论文
共 50 条
  • [41] Multimodal Monocular Dense Depth Estimation with Event-Frame Fusion Using Transformer
    Xiao, Baihui
    Xu, Jingzehua
    Zhang, Zekai
    Xing, Tianyu
    Wang, Jingjing
    Ren, Yong
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING-ICANN 2024, PT II, 2024, 15017 : 419 - 433
  • [42] Monocular visual odometry in dynamic environments by utilizing motion segmentation and attention mechanism
    Chen, Shuo
    Lu, Lixin
    Chen, Dongxing
    Chen, Dongdong
    Kong, Dongdong
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (03)
  • [43] Fully convolutional multi-scale dense networks for monocular depth estimation
    Liu, Jiwei
    Zhang, Yunzhou
    Cui, Jiahua
    Feng, Yonghui
    Pang, Linzhuo
    IET COMPUTER VISION, 2019, 13 (05) : 515 - 522
  • [44] Unsupervised Monocular Estimation of Depth and Visual Odometry Using Attention and Depth-Pose Consistency Loss
    Song, Xiaogang
    Hu, Haoyue
    Liang, Li
    Shi, Weiwei
    Xie, Guo
    Lu, Xiaofeng
    Hei, Xinhong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 3517 - 3529
  • [45] Triple-Supervised Convolutional Transformer Aggregation for Robust Monocular Endoscopic Dense Depth Estimation
    Fan, Wenkang
    Jiang, Wenjing
    Shi, Hong
    Zeng, Hui-Qing
    Chen, Yinran
    Luo, Xiongbiao
    IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS, 2024, 6 (03): : 1017 - 1029
  • [46] Using Unsupervised Deep Learning Technique for Monocular Visual Odometry
    Liu, Qiang
    Li, Ruihao
    Hu, Huosheng
    Gu, Dongbing
    IEEE ACCESS, 2019, 7 : 18076 - 18088
  • [47] Monocular Visual Odometry Based on Recurrent Convolutional Neural Networks
    Chen Z.
    Hong Y.
    Wang J.
    Ge Z.
    Jiqiren/Robot, 2019, 41 (02): : 147 - 155
  • [48] From Local Understanding to Global Regression in Monocular Visual Odometry
    Esfahani, Mandi Abolfazli
    Wu, Keyu
    Yuan, Shenghai
    Wang, Han
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2020, 34 (01)
  • [49] Monocular Visual Odometry Based on Optical Flow and Feature Matching
    Cheng Chuanqi
    Hao Xiangyang
    Zhang Zhenjie
    Zhao Mandan
    2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 4554 - 4558
  • [50] A Visible-Thermal Fusion Based Monocular Visual Odometry
    Poujol, Julien
    Aguilera, Cristhian A.
    Danos, Etienne
    Vintimilla, Boris X.
    Toledo, Ricardo
    Sappa, Angel D.
    ROBOT 2015: SECOND IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 1, 2016, 417 : 517 - 528