Dense Prediction Transformer for Scale Estimation in Monocular Visual Odometry

被引:3
|
作者
Francani, Andre O. [1 ]
Maximo, Marcos R. O. A. [1 ]
机构
[1] Aeronaut Inst Technol, Autonomous Computat Syst Lab Lab SCA, Comp Sci Div, Sao Jose Dos Campos, SP, Brazil
来源
2022 LATIN AMERICAN ROBOTICS SYMPOSIUM (LARS), 2022 BRAZILIAN SYMPOSIUM ON ROBOTICS (SBR), AND 2022 WORKSHOP ON ROBOTICS IN EDUCATION (WRE) | 2022年
关键词
monocular visual odometry; scale estimation; deep learning; monocular depth estimation; vision transformer;
D O I
10.1109/LARS/SBR/WRE56824.2022.9995735
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Monocular visual odometry consists of the estimation of the position of an agent through images of a single camera, and it is applied in autonomous vehicles, medical robots, and augmented reality. However, monocular systems suffer from the scale ambiguity problem due to the lack of depth information in 2D frames. This paper contributes by showing an application of the dense prediction transformer model for scale estimation in monocular visual odometry systems. Experimental results show that the scale drift problem of monocular systems can be reduced through the accurate estimation of the depth map by this model, achieving competitive state-of-the-art performance on a visual odometry benchmark.
引用
收藏
页码:312 / 317
页数:6
相关论文
共 50 条
  • [31] Self-supervised deep monocular visual odometry and depth estimation with observation variation
    Zhao, Wentao
    Wang, Yanbo
    Wang, Zehao
    Li, Rui
    Xiao, Peng
    Wang, Jingchuan
    Guo, Rui
    DISPLAYS, 2023, 80
  • [32] Scale-Aware Monocular Visual Odometry and Extrinsic Calibration Using Vehicle Kinematics
    Kim, Changhyeon
    Jang, Youngseok
    Kim, Junha
    Kim, Pyojin
    Kim, H. Jin
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (12) : 14757 - 14771
  • [33] METER: A Mobile Vision Transformer Architecture for Monocular Depth Estimation
    Papa, Lorenzo
    Russo, Paolo
    Amerini, Irene
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (10) : 5882 - 5893
  • [34] DTTNet: Depth Transverse Transformer Network for Monocular Depth Estimation
    Kamath, Shreyas K. M.
    Rajeev, Srijith
    Panetta, Karen
    Agaian, Sos S.
    MULTIMODAL IMAGE EXPLOITATION AND LEARNING 2022, 2022, 12100
  • [35] Deep Virtual Stereo Odometry: Leveraging Deep Depth Prediction for Monocular Direct Sparse Odometry
    Yang, Nan
    Wang, Rui
    Stueckler, Joerg
    Cremers, Daniel
    COMPUTER VISION - ECCV 2018, PT VIII, 2018, 11212 : 835 - 852
  • [36] A Comparison of Deep Learning-Based Monocular Visual Odometry Algorithms
    Jeong, Eunju
    Lee, Jaun
    Kim, Pyojin
    PROCEEDINGS OF THE 2021 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON AEROSPACE TECHNOLOGY (APISAT 2021), VOL 2, 2023, 913 : 923 - 934
  • [37] Monocular depth estimation based on dense connections
    Wang, Quande
    Cheng, Kai
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023, 51 (11): : 75 - 82
  • [38] Simultaneous Monocular Endoscopic Dense Depth and Odometry Estimation Using Local-Global Integration Networks
    Fan, Wenkang
    Jiang, Wenjing
    Fang, Hao
    Shi, Hong
    Chen, Jianhua
    Luo, Xiongbiao
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT VI, 2024, 15006 : 564 - 574
  • [39] Improving Monocular Visual Odometry Using Learned Depth
    Sun, Libo
    Yin, Wei
    Xie, Enze
    Li, Zhengrong
    Sun, Changming
    Shen, Chunhua
    IEEE TRANSACTIONS ON ROBOTICS, 2022, 38 (05) : 3173 - 3186
  • [40] Monocular Visual Odometry based on Inverse Perspective Mapping
    Cao Yu
    Feng Ying
    Yang Yun-tao
    Chen Yun-jin
    Lei Bing
    Zhao Li-shuang
    INTERNATIONAL SYMPOSIUM ON PHOTOELECTRONIC DETECTION AND IMAGING 2011: ADVANCES IN IMAGING DETECTORS AND APPLICATIONS, 2011, 8194