Dense Prediction Transformer for Scale Estimation in Monocular Visual Odometry

被引:3
|
作者
Francani, Andre O. [1 ]
Maximo, Marcos R. O. A. [1 ]
机构
[1] Aeronaut Inst Technol, Autonomous Computat Syst Lab Lab SCA, Comp Sci Div, Sao Jose Dos Campos, SP, Brazil
来源
2022 LATIN AMERICAN ROBOTICS SYMPOSIUM (LARS), 2022 BRAZILIAN SYMPOSIUM ON ROBOTICS (SBR), AND 2022 WORKSHOP ON ROBOTICS IN EDUCATION (WRE) | 2022年
关键词
monocular visual odometry; scale estimation; deep learning; monocular depth estimation; vision transformer;
D O I
10.1109/LARS/SBR/WRE56824.2022.9995735
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Monocular visual odometry consists of the estimation of the position of an agent through images of a single camera, and it is applied in autonomous vehicles, medical robots, and augmented reality. However, monocular systems suffer from the scale ambiguity problem due to the lack of depth information in 2D frames. This paper contributes by showing an application of the dense prediction transformer model for scale estimation in monocular visual odometry systems. Experimental results show that the scale drift problem of monocular systems can be reduced through the accurate estimation of the depth map by this model, achieving competitive state-of-the-art performance on a visual odometry benchmark.
引用
收藏
页码:312 / 317
页数:6
相关论文
共 50 条
  • [21] Dense monocular depth estimation for stereoscopic vision based on pyramid transformer and multi-scale feature fusion
    Zhongyi Xia
    Tianzhao Wu
    Zhuoyan Wang
    Man Zhou
    Boqi Wu
    C. Y. Chan
    Ling Bing Kong
    Scientific Reports, 14
  • [22] Survey and Research Challenges in Monocular Visual Odometry
    Neyestani, Arman
    Picariello, Francesco
    Basiri, Amin
    Daponte, Pasquale
    De Vito, Luca
    2023 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR LIVING ENVIRONMENT, METROLIVENV, 2023, : 107 - 112
  • [23] Monocular Visual Odometry for underground railway scenarios
    Etxeberria-Garcia, Mikel
    Labayen, Mikel
    Eizaguirre, Fernando
    Zamalloa, Maider
    Arana-Arexolaleiba, Nestor
    FIFTEENTH INTERNATIONAL CONFERENCE ON QUALITY CONTROL BY ARTIFICIAL VISION, 2021, 11794
  • [24] STMVO: biologically inspired monocular visual odometry
    Li, Yangming
    Zhang, Jian
    Li, Shuai
    NEURAL COMPUTING & APPLICATIONS, 2018, 29 (06) : 215 - 225
  • [25] STMVO: biologically inspired monocular visual odometry
    Yangming Li
    Jian Zhang
    Shuai Li
    Neural Computing and Applications, 2018, 29 : 215 - 225
  • [26] LIMO: Lidar-Monocular Visual Odometry
    Graeter, Johannes
    Wilczynski, Alexander
    Lauer, Martin
    2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2018, : 7872 - 7879
  • [27] Milk: Monocular Visual Odometry with Motion Constraints
    Choi, Sunglok
    Yu, Wonpil
    2012 9TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS AND AMBIENT INTELLIGENCE (URAL), 2012, : 199 - 199
  • [28] Perceptual Enhancement for Unsupervised Monocular Visual Odometry
    Wang, Zhongyi
    Shen, Mengjiao
    Liu, Chengju
    Chen, Qijun
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2025, 23 (01) : 346 - 357
  • [29] WPO-Net: Windowed Pose Optimization Network for Monocular Visual Odometry Estimation
    Gadipudi, Nivesh
    Elamvazuthi, Irraivan
    Lu, Cheng-Kai
    Paramasivam, Sivajothi
    Su, Steven
    SENSORS, 2021, 21 (23)
  • [30] EndoSLAM dataset and an unsupervised monocular visual odometry and depth estimation approach for endoscopic videos
    Ozyoruk, Kutsev Bengisu
    Gokceler, Guliz Irem
    Bobrow, Taylor L.
    Coskun, Gulfize
    Incetan, Kagan
    Almalioglu, Yasin
    Mahmood, Faisal
    Curto, Eva
    Perdigoto, Luis
    Oliveira, Marina
    Sahin, Hasan
    Araujo, Helder
    Alexandrino, Henrique
    Durr, Nicholas J.
    Gilbert, Hunter B.
    Turan, Mehmet
    MEDICAL IMAGE ANALYSIS, 2021, 71