Relativistic Hamiltonians in many-body theories

被引:5
|
作者
Amore, P [1 ]
Barbaro, MB [1 ]
DePace, A [1 ]
机构
[1] IST NAZL FIS NUCL, SEZ TORINO, I-10125 TURIN, ITALY
来源
PHYSICAL REVIEW C | 1996年 / 53卷 / 06期
关键词
D O I
10.1103/PhysRevC.53.2801
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We discuss the description of a many-body nuclear system using Hamiltonians that contain the nucleon relativistic kinetic energy and potentials with relativistic corrections. Through the Foldy-Wouthuysen transformation, the field theoretical problem of interacting nucleons and mesons is mapped to an equivalent one in terms of relativistic potentials, which are then expanded at some order in 1/m(N). The formalism is applied to the Hartree problem in nuclear matter, showing how the results of the relativistic mean field theory can be recovered over a wide range of densities.
引用
收藏
页码:2801 / 2808
页数:8
相关论文
共 50 条
  • [31] Estimation of many-body quantum Hamiltonians via compressive sensing
    Shabani, A.
    Mohseni, M.
    Lloyd, S.
    Kosut, R. L.
    Rabitz, H.
    PHYSICAL REVIEW A, 2011, 84 (01):
  • [32] Many-Body Perturbation Theories for Finite Nuclei
    Tichai, Alexander
    Roth, Robert
    Duguet, Thomas
    FRONTIERS IN PHYSICS, 2020, 8
  • [33] Optimal free descriptions of many-body theories
    Turner, Christopher J.
    Meichanetzidis, Konstantinos
    Papic, latko
    Pachos, Jiannis K.
    NATURE COMMUNICATIONS, 2017, 8
  • [34] Optimal free descriptions of many-body theories
    Christopher J. Turner
    Konstantinos Meichanetzidis
    Zlatko Papić
    Jiannis K. Pachos
    Nature Communications, 8
  • [35] SUBSIDIARY CONDITIONS ON NUCLEAR MANY-BODY THEORIES
    CLARK, JW
    RISTIG, ML
    PHYSICAL REVIEW C, 1972, 5 (05): : 1553 - +
  • [36] Integrable many-body systems and gauge theories
    A. S. Gorskii
    Theoretical and Mathematical Physics, 2000, 125 : 1305 - 1348
  • [37] Integrable many-body systems in the field theories
    Gorsky, A
    THEORETICAL AND MATHEMATICAL PHYSICS, 1995, 103 (03) : 681 - 700
  • [38] Integrable many-body systems and gauge theories
    Gorskii, AS
    THEORETICAL AND MATHEMATICAL PHYSICS, 2000, 125 (01) : 1305 - 1348
  • [39] Pade resummation of many-body perturbation theories
    Pavlyukh, Y.
    SCIENTIFIC REPORTS, 2017, 7
  • [40] Efficient variational diagonalization of fully many-body localized Hamiltonians
    Pollmann, Frank
    Khemani, Vedika
    Cirac, J. Ignacio
    Sondhi, S. L.
    PHYSICAL REVIEW B, 2016, 94 (04)