Relativistic Hamiltonians in many-body theories

被引:5
|
作者
Amore, P [1 ]
Barbaro, MB [1 ]
DePace, A [1 ]
机构
[1] IST NAZL FIS NUCL, SEZ TORINO, I-10125 TURIN, ITALY
来源
PHYSICAL REVIEW C | 1996年 / 53卷 / 06期
关键词
D O I
10.1103/PhysRevC.53.2801
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We discuss the description of a many-body nuclear system using Hamiltonians that contain the nucleon relativistic kinetic energy and potentials with relativistic corrections. Through the Foldy-Wouthuysen transformation, the field theoretical problem of interacting nucleons and mesons is mapped to an equivalent one in terms of relativistic potentials, which are then expanded at some order in 1/m(N). The formalism is applied to the Hartree problem in nuclear matter, showing how the results of the relativistic mean field theory can be recovered over a wide range of densities.
引用
收藏
页码:2801 / 2808
页数:8
相关论文
共 50 条
  • [21] Recent progress in relativistic many-body approach
    Ban, S. F.
    Geng, L. S.
    Liu, L.
    Long, W. H.
    Meng, J.
    Peng, J.
    Yao, J. M.
    Zhang, S. Q.
    Zhou, S. G.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2006, 15 (07): : 1447 - 1464
  • [22] The relativistic many-body problem and application to bottomonium
    Moshinsky, M
    Riquer, V
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (08): : 2163 - 2174
  • [23] Meson structure in a relativistic many-body approach
    Llanes-Estrada, FJ
    Cotanch, SR
    PHYSICAL REVIEW LETTERS, 2000, 84 (06) : 1102 - 1105
  • [24] RELATIVISTIC MANY-BODY CALCULATIONS ON ATOMIC SYSTEMS
    LINDGREN, I
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1994, 242 (4-6): : 269 - 284
  • [25] THE RELATIVISTIC MANY-BODY PROBLEM IN MOLECULAR THEORY
    KUTZELNIGG, W
    PHYSICA SCRIPTA, 1987, 36 (03) : 416 - 431
  • [26] A RELATIVISTIC GLAUBER EXPANSION FOR MANY-BODY SYSTEM
    朱熙泉
    何祚庥
    赵维勤
    鲍诚光
    Science China Mathematics, 1980, (12) : 1522 - 1532
  • [27] A RELATIVISTIC GLAUBER EXPANSION FOR MANY-BODY SYSTEM
    ZHU, XQ
    HE, ZX
    ZHAO, WQ
    BAO, CG
    SCIENTIA SINICA, 1980, 23 (12): : 1522 - 1532
  • [28] Relativistic multireference many-body perturbation theory
    Vilkas, MJ
    Koc, K
    Ishikawa, Y
    NEW TRENDS IN QUANTUM SYSTEMS IN CHEMISTRY AND PHYSICS, VOL 1: BASIC PROBLEMS AND MODEL SYSTEMS, 2001, 6 : 191 - 218
  • [29] RELATIVISTIC COLLECTIVE VARIABLES FOR MANY-BODY SYSTEMS
    HESS, PO
    MOSHINSKY, M
    GREINER, W
    SCHMIDT, G
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1982, 8 (11) : L179 - L183
  • [30] Learning Many-Body Hamiltonians with Heisenberg-Limited Scaling
    Huang, Hsin-Yuan
    Tong, Yu
    Fang, Di
    Su, Yuan
    PHYSICAL REVIEW LETTERS, 2023, 130 (20)