Rotational Invariance Based on Fourier Analysis in Polar and Spherical Coordinates

被引:79
作者
Wang, Qing [1 ]
Ronneberger, Olaf
Burkhardt, Hans
机构
[1] Univ Freiburg, Dept Comp Sci, Chair Pattern Recognit & Image Proc, D-79110 Freiburg, Germany
关键词
Invariants; Fourier analysis; radial transform; multidimensional; TRANSFORM;
D O I
10.1109/TPAMI.2009.29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, polar and spherical Fourier analysis are defined as the decomposition of a function in terms of eigenfunctions of the Laplacian with the eigenfunctions being separable in the corresponding coordinates. The proposed transforms provide effective decompositions of an image into basic patterns with simple radial and angular structures. The theory is compactly presented with an emphasis on the analogy to the normal Fourier transform. The relation between the polar or spherical Fourier transform and the normal Fourier transform is explored. As examples of applications, rotation-invariant descriptors based on polar and spherical Fourier coefficients are tested on pattern classification problems.
引用
收藏
页码:1715 / 1722
页数:8
相关论文
共 25 条
[1]  
Arvacheh EM, 2005, 2005 IEEE INSTRUMENT, V2, P1574, DOI [10.1109/IMTC.2005.1604417, DOI 10.1109/IMTC.2005.1604417]
[2]  
Averbuch A, 2003, CONF REC ASILOMAR C, P1933
[3]   THE FAST HANKEL TRANSFORM AS A TOOL IN THE SOLUTION OF THE TIME-DEPENDENT SCHRODINGER-EQUATION [J].
BISSELING, R ;
KOSLOFF, R .
JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 59 (01) :136-151
[4]  
BORN M, 1989, PRINCIPLES OPTICS EL, P523
[5]  
BURKHARDT H, 1979, REIHE VDI ZEITSCHRIF, V10
[6]  
Chang C.C., 2009, LIBSVM LIB SUPPORT V
[7]   3D model representation using spherical harmonics [J].
Erturk, S ;
Dennis, TJ .
ELECTRONICS LETTERS, 1997, 33 (11) :951-952
[8]  
HUANG H, 2004, IEEE T INF TECHNOL B, V11, P474
[9]  
KAPLAN W, 1991, ADV CALCULUS, P696
[10]  
Kazhdan M., 2003, S GEOMETRY PROCESSIN, P167