Continuous maps that preserve Hausdorff measure

被引:0
|
作者
Deng, Da-Wen [1 ]
Huang, Yulan [2 ]
Ngai, Sze-Man [3 ,4 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[3] Hunan Normal Univ, Coll Math & Stat, Key Lab High Performance Comp & Stochast Informat, Minist Educ China, Changsha 410081, Hunan, Peoples R China
[4] Georgia Southern Univ, Dept Math Sci, Statesboro, GA 30460 USA
基金
中国国家自然科学基金;
关键词
Hausdorff measure; Homeomorphism; Cantor set; Self-similar set; Cantor dust; LIPSCHITZ EQUIVALENCE;
D O I
10.1016/j.jmaa.2022.126485
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the space of homeomorphisms on the unit interval [0, 1], equipped with the topology of uniform convergence, contains a dense subspace of functions that preserve the Hausdorff measure of any subset of certain one-dimensional self-similar sets. We extend the results to a class of Cantor dust type self-similar sets in R-2. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条