An efficient algorithm to determine all shortest paths in Sierpinski graphs

被引:27
作者
Hinz, Andreas M. [1 ,2 ]
auf der Heide, Caroline Holz [1 ]
机构
[1] Ludwig Maximilians Univ Munchen, Fac Math Comp Sci & Stat, Munich, Germany
[2] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
关键词
Shortest path algorithm; Automata; Sierpinski graphs; Switching Tower of Hanoi; METRIC PROPERTIES; HANOI; TOWER; DIMENSION; DISTANCES;
D O I
10.1016/j.dam.2014.05.049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the Switching Tower of Hanoi interpretation of Sierpinski graphs S-p(n) the P2 decision problem is to find out whether the largest moving disc has to be transferred once or twice in a shortest path between two given states/vertices. We construct an essentially optimal algorithm thus extending Romik's approach for p = 3 to the general case. The algorithm makes use of three automata and the underlying theory includes a simple argument for the fact that there are at most two shortest paths between any two vertices. The total number of pairs leading to non-unique solutions is determined and employing a Markov chain argument it is shown that the number of input pairs needed for the decision is bounded above by a number independent of n. Elementary algorithms for the length of the shortest path(s) and the best first move/edge are also presented. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:111 / 120
页数:10
相关论文
共 15 条
[1]  
Aumann S., 2014, MOVES LERGEST DISC S
[2]   Distances in SierpiA"ski graphs and on the SierpiA"ski gasket [J].
Cristea, Ligia L. ;
Steinsky, Bertran .
AEQUATIONES MATHEMATICAE, 2013, 85 (03) :201-219
[3]  
Hinz A. M., 2013, The tower of Hanoi, myths and maths
[4]   Metric properties of the Tower of Hanoi graphs and Stem's diatomic sequence [J].
Hinz, AM ;
Klavzar, S ;
Milutinovic, U ;
Parisse, D ;
Petr, C .
EUROPEAN JOURNAL OF COMBINATORICS, 2005, 26 (05) :693-708
[5]   SHORTEST PATHS BETWEEN REGULAR STATES OF THE TOWER OF HANOI [J].
HINZ, AM .
INFORMATION SCIENCES, 1992, 63 (1-2) :173-181
[6]  
Hinz AM., 1989, ENSEIGN MATH, V35, P289, DOI DOI 10.5169/SEALS-57378
[7]   The Average Eccentricity of Sierpinski Graphs [J].
Hinz, Andreas M. ;
Parisse, Daniele .
GRAPHS AND COMBINATORICS, 2012, 28 (05) :671-686
[8]   Graphs S(n,k) and a variant of the tower of Hanoi problem [J].
Klavzar, S ;
Milutinovic, U .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 1997, 47 (01) :95-104
[9]   ON DISTANCES IN SIERPINSKI GRAPHS: ALMOST-EXTREME VERTICES AND METRIC DIMENSION [J].
Klavzar, Sandi ;
Zemljic, Sara Sabrina .
APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2013, 7 (01) :72-82
[10]   Hamming dimension of a graph-The case of Sierpinski graphs [J].
Klavzar, Sandi ;
Peterin, Iztok ;
Zemljic, Sara Sabrina .
EUROPEAN JOURNAL OF COMBINATORICS, 2013, 34 (02) :460-473