Wrinkling and folding of nanotube-polymer bilayers

被引:11
|
作者
Semler, Matthew R. [1 ]
Harris, John M. [1 ]
Hobbie, Erik K. [2 ]
机构
[1] N Dakota State Univ, Dept Phys, Fargo, ND 58108 USA
[2] N Dakota State Univ, Dept Coatings & Polymer Mat, Dept Phys, Fargo, ND 58108 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2014年 / 141卷 / 04期
基金
美国国家科学基金会;
关键词
WALLED CARBON NANOTUBES; THIN-FILMS; ULTRACENTRIFUGATION; NANOPARTICLES; PERCOLATION; INTERFACES; SEPARATION; MECHANICS; TRANSPORT; NETWORKS;
D O I
10.1063/1.4887775
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The influence of a polymer capping layer on the deformation of purified single-wall carbon nanotube (SWCNT) networks is analyzed through the wrinkling of compressed SWCNT-polymer bilayers on polydimethylsiloxane. The films exhibit both wrinkling and folding under compression and we extract the elastoplastic response using conventional two-plate buckling schemes. The formation of a diffuse interpenetrating nanotube-polymer interface has a dramatic effect on the nanotube layer modulus for both metallic and semiconducting species. In contrast to the usual percolation exhibited by the pure SWCNT films, the capped films show a crossover from "composite" behavior (the modulus of the SWCNT film is enhanced by the polymer) to "plasticized" behavior (the modulus of the SWCNT film is reduced by the polymer) as the SWCNT film thickness increases. For almost all thicknesses, however, the polymer enhances the yield strain of the nanotube network. Conductivity measurements on identical films suggest that the polymer has a modest effect on charge transport, which we interpret as a strain-induced polymer penetration of interfacial nanotube contacts. We use scaling, Flory-Huggins theory, and independently determined nanotube-nanotube and nanotube-polymer Hamaker constants to model the response. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Recent Advances in Research on Carbon Nanotube-Polymer Composites
    Byrne, Michele T.
    Gun'ko, Yurii K.
    ADVANCED MATERIALS, 2010, 22 (15) : 1672 - 1688
  • [22] Route for single-walled nanotube-polymer composites
    Holzinger, M
    Steinmetz, J
    Samaille, D
    Bernier, P
    Aboutanos, V
    Glerup, M
    ELECTRONIC PROPERTIES OF SYNTHETIC NANOSTRUCTURES, 2004, 723 : 469 - 472
  • [23] Modeling of carbon nanotubes and carbon nanotube-polymer composites
    Pal, G.
    Kumar, S.
    PROGRESS IN AEROSPACE SCIENCES, 2016, 80 : 33 - 58
  • [24] Carbon nanotube-polymer hybrids: Structure and periodic functionalization
    Li, Christopher Y.
    Li, Lingyu
    Li, Bing
    Birnkrant, Michael
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 : U3737 - U3738
  • [25] Mechanical strength of boron nitride nanotube-polymer interfaces
    Chen, Xiaoming
    Zhang, Liuyang
    Park, Cheol
    Fay, Catharine C.
    Wang, Xianqiao
    Ke, Changhong
    APPLIED PHYSICS LETTERS, 2015, 107 (25)
  • [26] Increasing the electrical conductivity of carbon nanotube/polymer composites by using weak nanotube-polymer interactions
    Zeng, You
    Liu, Pengfei
    Du, Jinhong
    Zhao, Long
    Ajayan, Pulickel M.
    Cheng, Hui-Ming
    CARBON, 2010, 48 (12) : 3551 - 3558
  • [27] Protein-functionalized carbon nanotube-polymer composites
    Bhattacharyya, S
    Sinturel, C
    Salvetat, JP
    Saboungi, ML
    APPLIED PHYSICS LETTERS, 2005, 86 (11) : 1 - 3
  • [28] Thermal properties and percolation in carbon nanotube-polymer composites
    Bonnet, P.
    Sireude, D.
    Garnier, B.
    Chauvet, O.
    APPLIED PHYSICS LETTERS, 2007, 91 (20)
  • [29] Carbon Nanotube-Polymer Nanoparticles inks for Healthcare Textiles
    Rai, Pratyush
    Lee, Jungmin
    Mathur, Gyanesh N.
    Varadan, Vijay K.
    NANOSYSTEMS IN ENGINEERING AND MEDICINE, 2012, 8548
  • [30] Creation of interfacial phonons by carbon nanotube-polymer coupling
    Li, Ching-Chen
    Lu, Chieh-Lien
    Lin, Yu-Tang
    Wei, Bee-Yu
    Hsu, Wen-Kuang
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (29) : 6034 - 6037