Wrinkling and folding of nanotube-polymer bilayers

被引:11
|
作者
Semler, Matthew R. [1 ]
Harris, John M. [1 ]
Hobbie, Erik K. [2 ]
机构
[1] N Dakota State Univ, Dept Phys, Fargo, ND 58108 USA
[2] N Dakota State Univ, Dept Coatings & Polymer Mat, Dept Phys, Fargo, ND 58108 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2014年 / 141卷 / 04期
基金
美国国家科学基金会;
关键词
WALLED CARBON NANOTUBES; THIN-FILMS; ULTRACENTRIFUGATION; NANOPARTICLES; PERCOLATION; INTERFACES; SEPARATION; MECHANICS; TRANSPORT; NETWORKS;
D O I
10.1063/1.4887775
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The influence of a polymer capping layer on the deformation of purified single-wall carbon nanotube (SWCNT) networks is analyzed through the wrinkling of compressed SWCNT-polymer bilayers on polydimethylsiloxane. The films exhibit both wrinkling and folding under compression and we extract the elastoplastic response using conventional two-plate buckling schemes. The formation of a diffuse interpenetrating nanotube-polymer interface has a dramatic effect on the nanotube layer modulus for both metallic and semiconducting species. In contrast to the usual percolation exhibited by the pure SWCNT films, the capped films show a crossover from "composite" behavior (the modulus of the SWCNT film is enhanced by the polymer) to "plasticized" behavior (the modulus of the SWCNT film is reduced by the polymer) as the SWCNT film thickness increases. For almost all thicknesses, however, the polymer enhances the yield strain of the nanotube network. Conductivity measurements on identical films suggest that the polymer has a modest effect on charge transport, which we interpret as a strain-induced polymer penetration of interfacial nanotube contacts. We use scaling, Flory-Huggins theory, and independently determined nanotube-nanotube and nanotube-polymer Hamaker constants to model the response. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Nanotube-polymer adhesion: a mechanics approach
    Wagner, HD
    CHEMICAL PHYSICS LETTERS, 2002, 361 (1-2) : 57 - 61
  • [2] Nanotube-Polymer Composites for Ultrafast Photonics
    Hasan, Tawfique
    Sun, Zhipei
    Wang, Fengqiu
    Bonaccorso, Francesco
    Tan, Ping Heng
    Rozhin, Aleksey G.
    Ferrari, Andrea C.
    ADVANCED MATERIALS, 2009, 21 (38-39) : 3874 - 3899
  • [3] MECHANICAL MODELLING OF NANOTUBE-POLYMER ADHESION
    Perelmuter, M. N.
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2011, 2 (02): : 119 - 125
  • [4] Novel Carbon Nanotube-Polymer Actuators and their Characteristics
    Kosidlo, U.
    Weis, D. G.
    Moosmann, M.
    Hofmann, M.
    Schnepf, A.
    Kolaric, I.
    ACTUATOR 08, CONFERENCE PROCEEDINGS, 2008, : 860 - 863
  • [5] Physical interactions at carbon nanotube-polymer interface
    Wong, M
    Paramsothy, M
    Xu, XJ
    Ren, Y
    Li, S
    Liao, K
    POLYMER, 2003, 44 (25) : 7757 - 7764
  • [6] Deformation of carbon nanotubes in nanotube-polymer composites
    Bower, C
    Rosen, R
    Jin, L
    Han, J
    Zhou, O
    APPLIED PHYSICS LETTERS, 1999, 74 (22) : 3317 - 3319
  • [7] Carbon nanotube-polymer interactions in nanocomposites: A review
    Rahmat, Meysam
    Hubert, Pascal
    COMPOSITES SCIENCE AND TECHNOLOGY, 2011, 72 (01) : 72 - 84
  • [8] Carbon nanotube-polymer nanocomposites: The role of interfaces
    Velasco-Santos, C
    Martinez-Hernandez, AL
    Castano, VM
    COMPOSITE INTERFACES, 2005, 11 (8-9) : 567 - 586
  • [9] Novel aligned carbon nanotube-polymer nanocomposites
    Zhang, Shanju
    Bucknall, David
    Lin, Wei
    Wong, Ching-Ping
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237
  • [10] Soluble Carbon Nanotubes and Nanotube-Polymer Composites
    Fujigaya, Tsuyohiko
    Nakashima, Naotoshi
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2012, 12 (03) : 1717 - 1738