The stimulation of arginine transport by TNFα in human endothelial cells depends on NF-κB activation

被引:26
作者
Visigalli, R
Bussolati, O
Sala, R
Barilli, A
Rotoli, BM
Parolari, A
Alamanni, F
Gazzola, GC
Dall'Asta, V
机构
[1] Univ Parma, Dipartimento Med Sperimentale, Sez Patol Gen & Clin, I-43100 Parma, Italy
[2] Univ Milan, Dipartimento Cardiochirurg, Ctr Cardiol Fdn Monzino, IRCCS, I-20122 Milan, Italy
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES | 2004年 / 1664卷 / 01期
关键词
CAT transporter; SLC7; gene; TNF alpha; NF kappa B;
D O I
10.1016/j.bbamem.2004.04.001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In human saphenous vein endothelial cells (HSVECs), tumor necrosis factor-alpha (TNFalpha) and bacterial lipopolysaccharide (LPS), but neither interferon gamma (IFNgamma) nor interleukin 1beta (IL-1beta), stimulate arginine transport. The effects of TNFalpha and LPS are due solely to the enhancement of system gamma(+) activity, whereas system gamma(+)L is substantially unaffected. TNFalpha causes an increased expression of SLC7A2/CAT2B gene while SLC7A1/CAT-1 expression is not altered by the cytokine. The suppression of PKC-dependent transduction pathways, obtained with the inhibitor chelerytrhine, the inhibitor peptide of PKCzeta isoform, or chronic exposure to phorbol esters, does not prevent TNFalpha effect on arginine transport. Likewise, ERK, JNK, and p38 MAP kinases are not involved in the cytokine effect, since arginine transport stimulation is unaffected by their specific inhibitors. On the contrary, inhibitors of NF-kappaB pathway hinder the increase in CAT2B mRNA and the stimulation of arginine uptake. These results indicate that in human endothelial cells the activation of NF-kappaB pathway mediates the TNFalpha effects on arginine transport. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:45 / 52
页数:8
相关论文
共 50 条
  • [21] Focal adhesion kinase modulates activation of NF-κB by flow in endothelial cells
    Petzold, Tobias
    Orr, A. Wayne
    Hahn, Cornelia
    Jhaveri, Krishna A.
    Parsons, J. Thomas
    Schwartz, Martin Alexander
    AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2009, 297 (04): : C814 - C822
  • [22] Subset of genes targeted by transcription factor NF-κB in TNFα-stimulated human HeLa cells
    Xing, Yujun
    Zhou, Fei
    Wang, Jinke
    FUNCTIONAL & INTEGRATIVE GENOMICS, 2013, 13 (01) : 143 - 154
  • [23] Role of IRAK1 on TNF-induced Proliferation and NF-κB Activation in Human Bone Marrow Mesenchymal Stem Cells
    Kim, Jong Myung
    Cho, Hyun Hwa
    Lee, Sun Young
    Hong, Chang Pyo
    Yang, Ji Won
    Kim, You Sun
    Suh, Kuen Tak
    Jung, Jin Sup
    CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 2012, 30 (01) : 49 - 60
  • [24] Glycyrrhetinic Acid Suppressed NF-κB Activation in TNF-α-Induced Hepatocytes
    Chen, Hong-Jhang
    Kang, Shih-Pei
    Lee, I-Jung
    Lin, Yun-Lian
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2014, 62 (03) : 618 - 625
  • [25] Positive and negative signaling components involved in TNFα-induced NF-κB activation
    Li, Hongxiu
    Lin, Xin
    CYTOKINE, 2008, 41 (01) : 1 - 8
  • [26] Inhibition of TNF-α-induced Activation of NF-κB by Hantavirus Nucleocapsid Proteins
    Taylor, Shannon L.
    Krempel, Ryan L.
    Schmaljohn, Connie S.
    IMMUNOLOGY AND PATHOGENESIS OF VIRAL HEMORRHAGIC FEVERS, 2009, 1171 (S1): : E86 - E93
  • [27] Asymmetric arginine dimethylation of RelA provides a repressive mark to modulate TNFα/NF-κB response
    Reintjes, Anja
    Fuchs, Julian E.
    Kremser, Leopold
    Lindner, Herbert H.
    Liedl, Klaus R.
    Huber, Lukas A.
    Valovka, Taras
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (16) : 4326 - 4331
  • [28] Celecoxib potently inhibits TNFα-induced nuclear translocation and activation of NF-κB
    Funakoshi-Tago, Megumi
    Shimizu, Taeko
    Tago, Kenji
    Nakamura, Motohiro
    Itoh, Hiroshi
    Sonoda, Yoshiko
    Kasahara, Tadashi
    BIOCHEMICAL PHARMACOLOGY, 2008, 76 (05) : 662 - 671
  • [29] Ac-SDKP suppresses TNF-α-induced ICAM-1 expression in endothelial cells via inhibition of IκB kinase and NF-κB activation
    Zhu, Liping
    Yang, Xiao-Ping
    Janic, Branislava
    Rhaleb, Nour-Eddine
    Harding, Pamela
    Nakagawa, Pablo
    Peterson, Edward L.
    Carretero, Oscar A.
    AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2016, 310 (09): : H1176 - H1183
  • [30] Mechanisms of constitutive NF-κB activation in human prostate cancer cells
    Suh, JH
    Payvandi, F
    Edelstein, LC
    Amenta, PS
    Zong, WX
    Gélinas, C
    Rabson, AB
    PROSTATE, 2002, 52 (03) : 183 - 200