Performance of the Levenberg-Marquardt neural network approach in nuclear mass prediction

被引:63
|
作者
Zhang, Hai Fei [1 ]
Wang, Li Hao [1 ]
Yin, Jing Peng [1 ]
Chen, Peng Hui [2 ]
Zhang, Hong Fei [2 ]
机构
[1] Northwest Inst Nucl Technol, Xian 710024, Peoples R China
[2] Lanzhou Univ, Sch Nucl Sci & Technol, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
binding energies and masses; liquid drop model; Levenberg Marquardt; neural network approach; SHELL;
D O I
10.1088/1361-6471/aa5d78
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Resorting to a neural network approach we refined several representative and sophisticated global nuclear mass models within the latest atomic mass evaluation (AME2012). In the training process, a quite robust algorithm named the Levenberg-Marquardt (LM) method is employed to determine the weights and biases of the neural network. As a result, this LM neural network approach demonstrates a very useful tool for further improving the accuracy of mass models. For a simple liquid drop formula the root mean square (rms) deviation between the predictions and the 2353 experimental known masses are sharply reduced from 2.455 MeV to 0.235 MeV, and for the other revisited mass models, the rms is remarkably improved by about 30%.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Adding Nonlinear System Dynamics to Levenberg-Marquardt Algorithm for Neural Network Control
    Larrea, Mikel
    Irigoyen, Eloy
    Gomez, Vicente
    ARTIFICIAL NEURAL NETWORKS (ICANN 2010), PT III, 2010, 6354 : 352 - 357
  • [42] Application of BP Neural Network Based on Levenberg-Marquardt Algorithm in Appraisal Analysis
    He Houfeng
    Wang Baoguo
    PROCEEDINGS OF THE 9TH CONFERENCE ON MAN-MACHINE-ENVIRONMENT SYSTEM ENGINEERING, 2009, : 266 - 270
  • [43] A Levenberg-Marquardt Based Neural Network for Short-Term Load Forecasting
    Ali, Saqib
    Riaz, Shazia
    Safoora
    Liu, Xiangyong
    Wang, Guojun
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 75 (01): : 1783 - 1800
  • [44] An intelligent oil reservoir identification approach by deploying quantum Levenberg-Marquardt neural network and rough set
    Liu, Nanping
    Zheng, Fei
    Xia, Kewen
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2011, 6 (1-2) : 76 - 85
  • [45] A New Levenberg-Marquardt Algorithm for feedforward neural networks
    Li, Yanlai
    Wang, Kuanquan
    Li, Tao
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2006, 13E : 3516 - 3519
  • [46] Levenberg-Marquardt flood prediction for Sungai Isap residence
    Faculty of Electrical and Electronics Engineering, Universiti Malaysia Pahang, Pahang, Malaysia
    Proc. - IEEE Conf. Syst., Process Control, ICSPC, 1600, (160-165):
  • [47] Fuzzy-Neural Predictive Control using Levenberg-Marquardt optimization approach
    Todorov, Yancho
    Terzyiska, Margarita
    Ahmed, Sevil
    Petrov, Michail
    2013 IEEE INTERNATIONAL SYMPOSIUM ON INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS (IEEE INISTA), 2013,
  • [48] Fast Computational Approach to the Levenberg-Marquardt Algorithm for Training Feedforward Neural Networks
    Bilski, Jaroslaw
    Smolag, Jacek
    Kowalczyk, Bartosz
    Grzanek, Konrad
    Izonin, Ivan
    JOURNAL OF ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING RESEARCH, 2023, 13 (02) : 45 - 61
  • [49] An echo state network based on Levenberg-Marquardt algorithm
    Wang, Lei
    Yang, Cuili
    Qiao, Junfei
    Wang, Gongming
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 3899 - 3904
  • [50] Cornering stiffness estimation using Levenberg-Marquardt approach
    Pereira, Camila Leao
    da Costa Neto, Ricardo Teixeira
    Loiola, Bruna Rafaella
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2021, 29 (12) : 2207 - 2238