The application of 3D printing to biological research has provided the tissue engineering community with a method for organizing cells and biological materials into complex 3D structures. While many commercial bioprinting platforms exist, they are expensive, ranging from $5000 to over $1,000,000. This high cost of entry prevents many labs from incorporating 3D bioprinting into their research. Due to the open-source nature of desktop plastic 3D printers, an alternative option has been to convert low-cost plastic printers into bioprinters. Several open-source modifications have been described, but there remains a need for a user-friendly, step-by-step guide for converting a thermoplastic printer into a bioprinter using components with validated performance. Here we convert a low-cost 3D printer, the FlashForge Finder, into a bioprinter using our Replistruder 4 syringe pump and the Duet3D Duet 2 WiFi for total cost of less than $900. We demonstrate that the accuracy of the bioprinter's travel is better than 35 mu m in all three axes and quantify fidelity by printing square lattice collagen scaffolds with average errors less than 2%. We also show high fidelity reproduction of clinical-imaging data by printing a scaffold of a human ear using collagen bioink. Finally, to maximize accessibility and customizability, all components we have designed for the bioprinter conversion are provided as open-source 3D models, along with instructions for further modifying the bioprinter for additional use cases, resulting in a comprehensive guide for the bioprinting field.