Impact of hydrodynamics on pollutant degradation and energy efficiency of VUV/UV and H2O2/UV oxidation processes

被引:26
|
作者
Bagheri, Mehdi [1 ]
Mohseni, Madjid [1 ]
机构
[1] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Flow characteristics; Vacuum-UV/UV; H2O2/UV; Micropollutants; Numerical modeling; Advanced oxidation; COMPUTATIONAL FLUID-DYNAMICS; VIOLET ABSORPTION-SPECTRA; BY-PRODUCT FORMATION; UV/H2O2; PROCESS; WATER-TREATMENT; MOLECULES H2O; UV; PHOTOREACTORS; PHOTODEGRADATION; DISINFECTION;
D O I
10.1016/j.jenvman.2015.08.024
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The Vacuum-UV/UV process, an incipient catalyst/chemical-free advanced oxidation process (AOP), is potentially a cost-effective solution for the removal of harmful micropollutants from water. Utilizing a novel mechanistic numerical model, this work aimed to establish a thorough understanding of the degradation mechanisms in the VUV/UV process operating under continuous flow conditions, when compared with the widely applied H2O2/UV AOP. Of particular interest was the examination of the impact of flow characteristics (hydrodynamics) on the degradation efficacy of a target micropollutant during the VUV/UV and H2O2/UV AOPs. While hydroxyl radical ((OH)-O-center dot) oxidation was the dominant degradation pathway in both processes, the degradation efficacy of the VUV/UV process showed much stronger correlation with the extent of mixing in the photoreactor. Under a uniform flow regime, the degradation efficiency of the target pollutant achieved by the H2O2/UV process with 2- and 5 ppm H2O2 was greater than that provided by the VUV/UV process. Nonetheless, introduction of mixing and circulation zones to the VUV/UV reactor resulted in superior performance compared with the H2O2/UV AOP. Based on the electrical energy-per-order (EEO) analysis, incorporation of circulation zones resulted in a reduction of up to 50% in the overall energy cost of the VUV/UV AOP, while the corresponding reduction for the 5-ppm H2O2/UV system was less than 5%. Furthermore, the extent of (OH)-O-center dot scavenging of natural organic matter (NOM) on energy efficiency of the VUV/UV and H2O2/UV AOPs under continuous flow conditions was assessed using the EEO analysis. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:114 / 120
页数:7
相关论文
共 50 条
  • [1] Degradation of Bisphenol A Using UV and UV/H2O2 Processes
    Felis, Ewa
    Ledakowicz, Stanislaw
    Miller, Jacek S.
    WATER ENVIRONMENT RESEARCH, 2011, 83 (12) : 2154 - 2158
  • [2] Degradation of Sulfamethoxazole Using UV and UV/H2O2 Processes
    Borowska, Ewa
    Felis, Ewa
    Miksch, Korneliusz
    JOURNAL OF ADVANCED OXIDATION TECHNOLOGIES, 2015, 18 (01) : 69 - 77
  • [3] Predicting pharmaceutical degradation by UV (LP)/H2O2 processes: A kinetic model
    Wols, B. A.
    Harmsen, D. J. H.
    Beerendonk, E. F.
    Hofman-Caris, C. H. M.
    CHEMICAL ENGINEERING JOURNAL, 2014, 255 : 334 - 343
  • [4] Degradation of melatonin by UV, UV/H2O2, Fe2+/H2O2 and UV/Fe2+/H2O2 processes
    Xu, Xiang-Rong
    Li, Xiao-Yan
    Li, Xiang-Zhong
    Li, Hua-Bin
    SEPARATION AND PURIFICATION TECHNOLOGY, 2009, 68 (02) : 261 - 266
  • [5] Comparison of UV/H2O2 and UV/PS processes for the degradation of thiamphenicol in aqueous solution
    Wang, Feige
    Wang, Wenjing
    Yuan, Shoujun
    Wang, Wei
    Hu, Zhen-Hu
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2017, 348 : 79 - 88
  • [6] UV and VUV photolysis vs. UV/H2O2 and VUV/H2O2 treatment for removal of clofibric acid from aqueous solution
    Li, Wenzhen
    Lu, Shuguang
    Qiu, Zhaofu
    Lin, Kuangfei
    ENVIRONMENTAL TECHNOLOGY, 2011, 32 (10) : 1063 - 1071
  • [7] Comparative Study of Reactive Dyes Oxidation by H2O2/UV, H2O2/UV/Fe2+ and H2O2/UV/Fe° Processes
    Skodic, Lidija
    Vajnhandl, Simona
    Valh, Julija Volmajer
    Zeljko, Tina
    Voncina, Bojana
    Lobnik, Aleksandra
    OZONE-SCIENCE & ENGINEERING, 2017, 39 (01) : 14 - 23
  • [8] Predicting pharmaceutical degradation by UV (MP)/H2O2 processes: A kinetic model
    Wols, B. A.
    Harmsen, D. J. H.
    Beerendonk, E. F.
    Hofman-Caris, C. H. M.
    CHEMICAL ENGINEERING JOURNAL, 2015, 263 : 336 - 345
  • [9] Degradation of antipyrine by UV, UV/H2O2 and UV/PS
    Tan, Chaoqun
    Gao, Naiyun
    Deng, Yang
    Zhang, Yongji
    Sui, Minghao
    Deng, Jing
    Zhou, Shiqing
    JOURNAL OF HAZARDOUS MATERIALS, 2013, 260 : 1008 - 1016
  • [10] Comparative investigation of gemfibrozil degradation by UV/H2O2 and UV/NaClO processes
    Yan B.
    Han C.
    Xia J.
    Wang S.
    Wu G.
    Xia W.
    Li J.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2023, 42 (11): : 6102 - 6112